云南省、贵州省重点达标名校2022-2023学年中考联考数学试题含解析.doc
《云南省、贵州省重点达标名校2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省、贵州省重点达标名校2022-2023学年中考联考数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差2如图O的直径
2、垂直于弦,垂足是,的长为( )AB4CD83下列多边形中,内角和是一个三角形内角和的4倍的是()A四边形 B五边形 C六边形 D八边形4下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab22ab=3b5如图,菱形ABCD的对角线相交于点O,过点D作DEAC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,ABC=60,则AE的长为()ABCD6如图是抛物线y=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:abc0;2a+b=0;方程ax2+bx+c=4有两个相等的
3、实数根;抛物线与x轴的另一个交点是(2.0);x(ax+b)a+b,其中正确结论的个数是()A4个B3个C2个D1个7甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件设乙每天完成x个零件,依题意下面所列方程正确的是()ABCD8如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称9 “五一”
4、期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A567103 B56.7104 C5.67105 D0.56710610如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90CAOCAOEDAODBOD18011如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )AkBk且CkDk且12如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30方向上的B处,这时,B处与灯塔P的距离为()A60 n
5、 mileB60 n mileC30 n mileD30 n mile二、填空题:(本大题共6个小题,每小题4分,共24分)13某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_(请写出盈利或亏损)_元14已知一组数据:3,3,4,5,5,则它的方差为_15因式分解: 16若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)17如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_18我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-
6、3, 4,-5,6,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,
7、该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.20(6分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN
8、能否成为正方形?若能,求出m的值;若不能,请说明理由21(6分)如图,点E,F在BC上,BECF,AD,BC,AF与DE交于点O求证:ABDC;试判断OEF的形状,并说明理由22(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务该工程队有两
9、种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24(10分)如图,以AD为直径的O交AB于C点,BD的延长线交O于E点,连CE交AD于F点,若ACBC(1)求证:;(2)若,求tanCED的值25(10分)已知:如图
10、,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.26(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率27(1
11、2分)计算:解方程:参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键2、C【解析】直径AB垂直于弦CD,CE=DE=CD,A=22.5,BOC=45,OE=CE,设OE=CE=x,OC=4,x2+x2=16,解得:x=2,即:CE=2,CD=4,故选C3、C【解析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为
12、n由题意得:(n2)180=4180解得:n=1答:这个多边形的边数为1故选C【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键4、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键5、C【解析】在菱形ABCD中,OC=AC,ACBD,DE=OC,DEAC,四边形OCED是平行四边形,ACBD,平行四边形OCED是矩形,在菱形ABCD中,ABC=60,ABC为等边三角
13、形,AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在RtACE中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.6、B【解析】通过图象得到、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,抛物线的顶点坐标是,抛物线对称轴为直线,则错误,正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点
14、,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,正确;由抛物线对称性,抛物线与轴的另一个交点是,则错误;不等式可以化为,抛物线顶点为,当时,故正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.7、B【解析】根据题意设出未知数,根据甲所用的时间乙所用的时间,用时间列出分式方程即可.【详解】设乙每天完成x个零件,则甲每天完成(x+8)个. 即得, ,故选B.【点睛】找出甲所用的时间乙所用的时间这个关系式是本题解题的关键.8、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE
15、在EOC与EOD中,OC=OD,CE=DE,OE=OE,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故选D9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 贵州省 重点 达标 名校 2022 2023 学年 中考 联考 数学试题 解析
限制150内