上海洋泾中学2023年高考全国统考预测密卷数学试卷含解析.doc
《上海洋泾中学2023年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海洋泾中学2023年高考全国统考预测密卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为坐标原点,角的终边经过点且,则( )ABCD2ABCD3关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲
2、丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为( )ABCD4下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A1B2C3D45两圆和相外切,且,则的最大值为( )AB9CD16若集合,则ABCD7如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角
3、余弦值为( )ABCD8函数且的图象是( )ABCD9如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为( )A BCD10己知集合,则( )ABCD 11若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D512甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D5二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则_.14在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_15曲线f(x
4、)=(x2 +x)lnx在点(1,f(1)处的切线方程为_.16直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得
5、到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.18(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;()为便于联络,现将所有的青年学生志愿者随机分成若干组(
6、每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)19(12分)如图,在三棱锥中,平面平面,.点,分别为线段,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.20(12分)已知集合,将的所有子集任意排列,得到一个有序集合组,其中.记集合中元素的个数为,规定空集中元素的个数为.当时,求的值;利用数学归纳法证明:不论为何值,总存在有序集合组,满足任意,都有.21(12分)已知的内角的对边分别为,且.()求;()若的周长是否有
7、最大值?如果有,求出这个最大值,如果没有,请说明理由.22(10分)已知函数.(1)讨论的零点个数;(2)证明:当时,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.2、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题3、B【解析】先利用几
8、何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.4、C【解析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件
9、的判定方法,即可判定【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属
10、于基础题5、A【解析】由两圆相外切,得出,结合二次函数的性质,即可得出答案.【详解】因为两圆和相外切所以,即当时,取最大值故选:A【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.6、C【解析】解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.7、C【解析】利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴/,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 海洋 中学 2023 年高 全国 统考 预测 数学试卷 解析
限制150内