《云南省云龙县第二中学2023年高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省云龙县第二中学2023年高考数学三模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD2某几
2、何体的三视图如图所示,则此几何体的体积为( )AB1CD3已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()ABCD4已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为 ABCD5设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD6一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD7已知复数是纯虚数,其中是实数,则等于( )ABCD8胡夫金字塔是底面为正方形的锥体,四个侧面都
3、是相同的等腰三角形研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为ABCD9若P是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知为虚数单位,复数,则其共轭复数( )ABCD11在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D412已知集合,则的真子集个数为( )A1个B2个C3个D4个二、填空题:本题共4小题,每小题5分,共20分。13已知数列是各
4、项均为正数的等比数列,若,则的最小值为_.14春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动已知某种盆栽植物每株成活的概率为,各株是否成活相互独立该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,则_15已知向量,且,则实数m的值是_16如图,在菱形ABCD中,AB=3,E,F分别为BC,CD上的点,若线段EF上存在一点M,使得,则_,_(本题第1空2分,第2空3分)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值18(12分
5、)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.19(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:20(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,且,证明.21(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围22(10分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
6、的。1、C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可【详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键2、C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.3、A【解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数
7、多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4、D【解析】由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可【详解】解:如图,点M,N
8、分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小, 设正方体的棱长为,则,取,连接,则共面,在中,设到的距离为,设到平面的距离为,.故选D【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题5、B【解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.6、B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱
9、,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体7、A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】 因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.8、D【解析】设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D9、B【解析】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻
10、辑命题10、B【解析】先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.11、B【解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴
11、,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力12、C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集二、填空题:本题共4小题,每小题5分,共20分。13、40【解析】设等比数列的公比为,根据,可得,因为,根据均值不等式,
12、即可求得答案.【详解】设等比数列的公比为,等比数列的各项为正数,当且仅当,即时,取得最小值.故答案为:.【点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.14、【解析】由题意可知:,且,从而可得值【详解】由题意可知:,即,故答案为:【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题15、1【解析】根据即可得出,从而求出m的值【详解】解:;m1故答案为:1【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算16、 【解析】根据题意,设,则,所以,解得,所以,从而有 .三、解
13、答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1), ()取中点,则,在中,(注:也可将两边平方)即, ,所以,当且仅当时取等号 此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得
14、结果.18、(1);(2)见解析.【解析】(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;(2)设函数的极大值点和极小值点分别为、,由(1)知,且满足,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.【详解】(1),当时,则函数在上单调递增;当时,则函数在上单调递减;当时,则函数在上单调递增.,.所以,函数在与不存在零点,在区间和上各存在一个零点.综上所述,函数在区间上的零点的个数为;(2),.由(1)得,在区间与上存在零点,所以,函数在区间与上各存在一个极值点、,且,且满足即,又,即,由在上单调递增,得,再由在上单调递减,得,即.【点睛
15、】本题考查利用导数研究函数的零点个数问题,同时也考查了利用导数证明不等式,考查分析问题和解决问题的能力,属于难题.19、(1)时,函数单调递增,函数单调递减,;(2)见解析【解析】(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,即在和上单调递增,当时,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也
16、就是最小值, 从而结论得证.【点睛】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题20、(1)若,则在定义域内递增;若,则在上单调递增,在上单调递减(2)证明见解析【解析】(1),分,讨论即可;(2)由题可得到,故只需证,即,采用换元法,转化为函数的最值问题来处理.【详解】由已知,若,则在定义域内递增;若,则在上单调递增,在上单调递减.(2)由题意,对求导可得从而,是的两个变号零点,因此下证:,即证令,即证:,对求导可得,因为故,所以在上单调递减,而,从而所以在单调递增,所以,即于是【点睛】本题考查利用导数研究函数的单调性以及证明不
17、等式,考查学生逻辑推理能力、转化与化归能力,是一道有一定难度的压轴题.21、 (1)x=1 (2)证明见解析 (3) 【解析】(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;(3)不等式 对一切正实数恒成立,设,分类讨论进而求解【详解】解:(1)令,所以,当时,在上单调递增;当时,在单调递减;所以,所以的零点为(2)由题意, ,要证 ,即证,即证,令,则,由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立(3)不等式 对一切正实数恒成立,设,记,当时,即时,恒成立,故单调递增于是当时,又,故,当时,又,故,又当时,因此,当时,当,即时,设的两个不等实根分别为,又,于是,故当时,从而在单调递减;当时,此时,于是,即 舍去,综上,的取值范围是【点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.22、(1);(2)【解析】(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1),当时,当时,得:,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.
限制150内