《云南省曲靖市陆良县第五中学2023年高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市陆良县第五中学2023年高三3月份模拟考试数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方
2、形,其表面积为,则该圆柱的内切球体积为( )ABCD2是虚数单位,复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限3很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )ABCD4如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图则下列结论中表
3、述不正确的是( )A从2000年至2016年,该地区环境基础设施投资额逐年增加;B2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.5已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD6如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )
4、A4BC2D7已知P是双曲线渐近线上一点,是双曲线的左、右焦点,记,PO,的斜率为,k,若,-2k,成等差数列,则此双曲线的离心率为( )ABCD8已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD39要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( )ABCD10设为抛物线的焦点,为抛物线上三点,若,则( ).A9B6CD11已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD12已知抛
5、物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或二、填空题:本题共4小题,每小题5分,共20分。13在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:甲校学生成绩的优秀率大于乙校学生成绩的优秀率;甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是_.14已知曲线,点,在曲线上
6、,且以为直径的圆的方程是则_15已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.16在中,角,的对边分别是,若,则的面积的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)
7、由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.18(12分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.19(12分)2019年9月26日,携程网发布2019国庆假
8、期旅游出行趋势预测报告,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的
9、分布列及数学期望.20(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核记表示学生的考核成绩,并规定为考核优秀为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:()从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;()从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;()记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由21(12分)已知在等比数列中,.(1)求数列的通项公式;
10、(2)若,求数列前项的和.22(10分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,
11、解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.2、D【解析】求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.3、B【解析】根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,
12、;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.4、D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5、C【解析】设M,N,P分别为和的中点,得出的夹角
13、为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.6、A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题7、B【解析】求得双曲线的一
14、条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,再由等差数列中项性质和离心率公式,计算可得所求值【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,则,由,成等差数列,可得,化为,即,可得,故选:【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平8、B【解析】过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,由抛物线定义知:
15、,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.9、C【解析】根据题意,分两种情况进行讨论:语文和数学都安排在上午;语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案【详解】根据题意,分两种情况进行讨论:语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语
16、文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题10、C【解析】设,由可得,利用定义将用表示即可.【详解】设,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.11、D【解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程
17、思想、转化与化归思想,考查逻辑推理能力、运算求解能力.12、C【解析】先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两
18、校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系,故正确.故答案为:.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.14、【解析】设所在直线方程为设点坐标分别为,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设点坐标分别为,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即.故答案为:【点睛】本题考查了直
19、线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.15、0【解析】由题意,列方程组可求,即求.【详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、【解析】化简得到,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【详解】,即,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在犯错误概率不超过的前提下认为“纤维长度
20、与土壤环境有关系”(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望试题解析:()根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系” ()由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3, , 的分布列为:1123 18、(1)(2)【解析】(1)利用正弦定理化简已知条件,由此求得的值,进而求得的大小
21、.(2)利用正弦定理和两角差的正弦公式,求得的表达式,进而求得的取值范围.【详解】(1)由题设知,即,所以,即,又所以.(2)由题设知,即,又为锐角三角形,所以,即所以,即,所以的取值范围是.【点睛】本小题主要考查利用正弦定理解三角形,考查利用角的范围,求边的比值的取值范围,属于中档题.19、(1),乙公司影响度高;(2)见解析,【解析】(1)利用各小矩形的面积和等于1可得a,由导游人数为40人可得b,再由总收人不低于40可计算出优秀率;(2)易得总收入在中甲公司有4人,乙公司有2人,则甲公司的人数的值可能为1,2,3,再计算出相应取值的概率即可.【详解】(1)由直方图知,解得,由频数分布表中
22、知:,解得.所以,甲公司的导游优秀率为:,乙公司的导游优秀率为:,由于,所以乙公司影响度高.(2)甲公司旅游总收入在中的有人,乙公司旅游总收入在中的有2人,故的可能取值为1,2,3,易知:,;.所以的分布列为:123P.【点睛】本题考查频率分布直方图、随机变量的分布列与期望,考查学生数据处理与数学运算的能力,是一道中档题.20、()()()见解析【解析】()根据茎叶图求出满足条件的概率即可;()结合图表得到6人中有2个人考核为优,从而求出满足条件的概率即可;()求出满足的成绩有16个,求出满足条件的概率即可【详解】解:()设这名学生考核优秀为事件,由茎叶图中的数据可以知道,30名同学中,有7名
23、同学考核优秀,所以所求概率约为()设从图中考核成绩满足的学生中任取2人,至少有一人考核成绩优秀为事件,因为表中成绩在的6人中有2个人考核为优,所以基本事件空间包含15个基本事件,事件包含9个基本事件,所以()根据表格中的数据,满足的成绩有16个,所以所以可以认为此次冰雪培训活动有效【点睛】本题考查了茎叶图问题,考查概率求值以及转化思想,是一道常规题21、(1)(2)【解析】(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和解题方法是基本量法基本量法是解决等差数列和等比数列的基本方法,务必掌握22、(1)(2)点在以为直径的圆上【解析】(1)根据题意列出关于,的方程组,解出,的值,即可得到椭圆的标准方程;(2)设点,则,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上【详解】(1)由题意可知,解得,椭圆的标准方程为:.(2)设点,则,直线的斜率为,直线的方程为:,令得,点的坐标为,点的坐标为,又点,在椭圆上,点在以为直径的圆上【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题
限制150内