【全国百强校首发】河南师范大附属中学2023年中考数学五模试卷含解析.doc
《【全国百强校首发】河南师范大附属中学2023年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《【全国百强校首发】河南师范大附属中学2023年中考数学五模试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1下列标志中,可以看作是轴对称图形的是( )ABCD2衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意
2、,列方程为ABCD3如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD4如图,ABC中,D、E分别为AB、AC的中点,已知ADE的面积为1,那么ABC的面积是()A2B3C4D55中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中孙子算经中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )ABCD6如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若
3、四边形EGFH是菱形,则AE的长是( )A2B3C5D67的绝对值是()ABCD8如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD9如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D5510的相反数是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11中国的九章算术是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,
4、依题意,可列出方程为_ .12从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是_13已知一次函数的图象与直线y=x+3平行,并且经过点(2,4),则这个一次函数的解析式为_14如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_.(精确到)15甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_S乙2(填“”“”或“=”)16如图,AB=AC,要使ABEACD,应添加的条件是 (添加一个条件即可)三、解
5、答题(共8题,共72分)17(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率18(8分)请你仅用无刻度的直尺在下面的图中作出ABC 的边 AB 上的高 CD如图,以等边三角形 ABC 的边 A
6、B 为直径的圆,与另两边 BC、AC 分别交于点 E、F如图,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E19(8分)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BCCDDA运动至A点停止,则从运动开始经过多少时间,BEP为等腰三角形.20(8分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).21(8分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与B的平分线相交于
7、点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若A=30,AB=2,则ABD的面积为 22(10分)先化简,再求值:,其中,.23(12分)如图,点在线段上,.求证:.24目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学
8、最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意故选D【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形
9、是要寻找对称中心,图形旋转180度后与原图重合2、A【解析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选:【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系3、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知
10、此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。4、C【解析】根据三角形的中位线定理可得DEBC,即可证得ADEABC,根据相似三角形面积的比等于相似比的平方可得,已知ADE的面积为1,即可求得SABC1【详解】D、E分别是AB、AC的中点,DE是ABC的中位线,DEBC,ADEABC,()2,ADE的面积为1,SABC1故选C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得ADEABC,根据相似三角形面积的比等于相似比的平方得
11、到是解决问题的关键.5、A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可【详解】设有x辆车,则可列方程:3(x-2)=2x+1故选:A【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键6、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案
12、选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数7、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.8、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图9、B【解析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国百强校首发 全国 百强校 首发 河南 师范 附属中学 2023 年中 数学 试卷 解析
限制150内