云南省曲靖市陆良县第五中学2022-2023学年高考数学押题试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《云南省曲靖市陆良县第五中学2022-2023学年高考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市陆良县第五中学2022-2023学年高考数学押题试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线:的焦点为,且上点满足,则双曲线的离心率为ABCD52已知等差数列中,则( )A20B18C16D143将函数的
2、图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD4若复数满足,则( )ABCD5是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD6函数的图象大致为ABCD7已知函数的图象如图所示,则可以为( )ABCD8设为的两个零点,且的最小值为1,则( )ABCD9设、,数列满足,则( )A对于任意,都存在实数,使得恒成立B对于任意,都存在实数,使得恒成立C对于任意,都存在实数,使得恒成立D对于任意,都存在实数,使得恒成立10已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是( )ABC2D311
3、点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为( ) ABCD12已知直线是曲线的切线,则( )A或1B或2C或D或1二、填空题:本题共4小题,每小题5分,共20分。13直线(,)过圆:的圆心,则的最小值是_.14已知函数()在区间上的值小于0恒成立,则的取值范围是_.15在边长为的菱形中,点在菱形所在的平面内若,则_16已知正项等比数列中,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分.(1)设抛掷4次的得分为,求变量的分布列和数学期望.(2)当游戏得分为时,游戏停止,记得分
4、的概率和为.求;当时,记,证明:数列为常数列,数列为等比数列.18(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,求证:.19(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,求证:若成等差数列,则也成等差数列.20(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.21(12分)在直角坐标系xOy
5、中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,求的最大值.22(10分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.2、A【解
6、析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【详解】设等差数列的公差为.由得,解得.所以.故选:A【点睛】本题主要考查了等差数列的基本量求解,属于基础题.3、B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.4、B【解析】由题意得,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于
7、基础题.5、D【解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.6、D【解析】由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,所以排除选项A、C,故选D7、A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行
8、奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题8、A【解析】先化简已知得,再根据题意得出f(x)的最小值正周期T为12,再求出的值【详解】由题得,设x1,x2为f(x)=2sin(x)(0)的两个零点,且的最小值为1,=1,解得T=2;=2,解得=故选A【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础
9、题9、D【解析】取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题10、A【解析】由点到直线距离公式建立的等式,变形后可求得离心率【详解】由题意,一条渐近线方程为,即,即,故选:A【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础11、D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 曲靖市 陆良县 第五 中学 2022 2023 学年 高考 数学 押题 试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内