上海市实验学校2022-2023学年高三下学期第五次调研考试数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《上海市实验学校2022-2023学年高三下学期第五次调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市实验学校2022-2023学年高三下学期第五次调研考试数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的( )A充分不必
2、要条件B必要不充分条件C充要条件D既不充分也不必要条件2已知是虚数单位,若,则实数( )A或B-1或1C1D3已知直线与圆有公共点,则的最大值为( )A4BCD4如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、分别交于、,设三棱锥的体积为,截面三角形的面积为,则( )A,B,C,D,5若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD6普通高中数学课程标准(2017版)提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是( )
3、A甲的数据分析素养高于乙B甲的数学建模素养优于数学抽象素养C乙的六大素养中逻辑推理最差D乙的六大素养整体平均水平优于甲7已知函数,且),则“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )ABCD9已知集合,则=( )ABCD10若,则下列关系式正确的个数是( ) A1B2C3D411已知,是两条不重合的直线,是两个不重合的平面,则下列命题中错误的是( )A若,则或B若,则C若,则D若,则12已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD二、填空题:本题
4、共4小题,每小题5分,共20分。13将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.143张奖券分别标有特等奖、一等奖和二等奖甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是_15已知向量,则_.16设函数 满足,且当时,又函数,则函数在上的零点个数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.18(12分)已知函数.(1)求函数的单调递增区间;
5、(2)在ABC中,角A,B,C所对的边分别是a,b,c,若满足,求.19(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.20(12分)已知为等差数列,为等比数列,的前n项和为,满足,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.21(12分)设函数(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围22(10分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等差数列;(2)设,求的前100项和参考答案一、选
6、择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出函数的图象,得到,把函数有零点转化为与在(2,4上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断【详解】作出函数的图象如图,由图可知,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,切线斜率为,k的取值范围是,函数有两个零点”是“”的充分不必要条件,故选A【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究
7、过曲线上某点处的切线方程,试题有一定的综合性,属于中档题2、B【解析】由题意得,然后求解即可【详解】,.又,.【点睛】本题考查复数的运算,属于基础题3、C【解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.4、A【解析】设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到
8、,使得,则,由余弦定理得,又,当平面平面时,排除B、D选项;因为,此时,当平面平面时,排除C选项.故选:A.【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题5、C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.6、D【解析】根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析
9、分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.7、C【解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 实验学校 2022 2023 学年 下学 第五 调研 考试 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内