2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc
《2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省溧水高级中学毕业升学考试模拟卷数学卷含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)2a、b互为相反数,则下列成立的是()Aab=1Ba+b=0Ca=bD=-13如图,两个反
2、比例函数y1(其中k10)和y2在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A:1B2:C2:1D29:144如图,由四个正方体组成的几何体的左视图是( )ABCD5下列实数中,结果最大的是()A|3|B()CD36由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()ABCD7下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A1个B2个C3个D4个8某小组5名同学在一
3、周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.89一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=510若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D511一个数和它的倒数相等,则这个数是( )A1B0C1D1和012如图,在中,将折叠,使点与的中点重合,折痕为,则线段的长为( )AB
4、CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如果,那么的结果是_.14已知关于x的方程x2mx40有两个相等的实数根,则实数m的值是_15如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90得到线段OB,则点B所在图象的函数表达式为_16如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,依此类推,则 _ 17如图,已知P是线段AB的黄金分割点,且PAPB若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_S2.(填“”“=”“ ”)18
5、如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G
6、的对应点F恰好落在y轴上时,请直接写出点P的坐标20(6分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标21(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的
7、降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?22(8分)如图,以40m/s的速度将小球沿与地面成30角的方向击出时,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h10t5t1小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?23(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为
8、D,连接AC、BC点P是该抛物线上一动点,设点P的横坐标为m(m4)(1)求该抛物线的表达式和ACB的正切值;(2)如图2,若ACP=45,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PMCD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由24(10分)如图,两座建筑物的水平距离为.从点测得点的仰角为53 ,从点测得点的俯角为37 ,求两座建筑物的高度(参考数据:25(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.
9、1万元/部月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元 若该公司当月卖出3部汽车,则每部汽车的进价为 万元; 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)26(12分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程27(12分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直
10、径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质2、B【解析】依据相反数的概念及性质即可得【详解】因为a、b互为相反数,所以a+b
11、=1,故选B【点睛】此题主要考查相反数的概念及性质相反数的定义:只有符号不同的两个数互为相反数,1的相反数是13、A【解析】试题分析:首先根据反比例函数y2=的解析式可得到=3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出EOF的面积,可以得到AOC与EOF的面积比,然后证明EOFAOC,根据对应边之比等于面积比的平方可得到EFAC=故选A考点:反比例函数系数k的几何意义4、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.5、B【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【详解】根据实数比较大小的
12、方法,可得|-3|=3-(-),所以最大的数是:-(-)故选B【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小6、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.7、B【解析】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图
13、形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个故选B【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键8、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C9、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.10、C【解析】解:这组数据1、a、2、1、
14、4的平均数为:(1+a+2+1+4)5=(a+10)5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=
15、2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数11、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义
16、:若两个数的乘积是1,我们就称这两个数互为倒数.12、C【解析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在RtBND中,根据勾股定理可得关于x的方程,解方程即可求解【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为
17、:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分14、4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值详解:方程有两个相等的实数根, 解得: 故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.15、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90,AOB=90,CAO+AOC=AOC+BO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 江苏省 溧水 高级中学 毕业 升学考试 模拟 数学 解析
限制150内