《2023届江西省高安二中重点达标名校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江西省高安二中重点达标名校中考联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务设原计划每天施工x米,所列方程正确的是()A=2B=2C=2D=22如图,且.、是上两点,.若,则的长为( )ABCD3下列对
2、一元二次方程x2+x3=0根的情况的判断,正确的是()A有两个不相等实数根B有两个相等实数根C有且只有一个实数根D没有实数根4在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()ABCD5已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=46下列运算正确的是( )Aa2a4=a8B2a2+a2=3a4Ca6a2=a3D(ab2)3=a3b67某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD8用教材中的计算器依次按键如
3、下,显示的结果在数轴上对应点的位置介于( )之间.AB与CBC与DCE与FDA与B9如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm10下列基本几何体中,三视图都是相同图形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是_岁12若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是_13解不等式组 请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(
4、3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_14在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 15用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_16把多项式3x212因式分解的结果是_17如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.三、解答题(共7小题,满分69分)18(10分)(1)计算:2sin45+(2)0()1;(2)先化简,再求值(a2b2),其中a,b219(5分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的
5、价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?20(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?21(10分)城市小区
6、生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率22(10分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作如的“理想值”(1)若点在直线上,则点的“理想值”等于_;如图,的半径为1若点在上,则点的“理想值”的取值范围是_(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值(要求画图位置准确,但不必尺规作图)23(12分)如图,在平面直角
7、坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点E,DFAC交抛物线对称轴于点F,求DE+DF的最大值;在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;点Q在抛物线对称轴上,其纵坐标为t,请直接写出ACQ为锐角三角形时t的取值范围24(14分)综合与实践:概念理解:将ABC 绕点 A 按逆时针方向旋转,旋转角记为 (090),并使各边长变为原来的 n 倍,得到ABC,如图
8、,我们将这种变换记为,n,: 问题解决:(2)如图,在ABC 中,BAC=30,ACB=90,对ABC 作变换,n得到ABC,使点 B,C,C在同一直线上,且四边形 ABBC为矩形,求 和 n 的值拓广探索:(3)在ABC 中,BAC=45,ACB=90,对ABC作变换 得到ABC,则四边形 ABBC为正方形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间实际所用时间=2,列出方程即可详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A点睛:本题
9、考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程2、D【解析】分析:详解:如图,ABCD,CEAD,1=2,又3=4,180-1-4=180-2-3,即A=C.BFAD,CED=BFD=90,AB=CD,ABFCDE,AF=CE=a,ED=BF=b,又EF=c,AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明ABFCDE是关键.3、A【解析】【分析】根据方程的系数结合根的判别式,即可得出=130,进而即可得出方程x2+x3=0有两个不相等的实数根【详解】a=1,b=1,c=3,=b24ac=124(1)(3)=130,方程x2+x3=0有两
10、个不相等的实数根,故选A【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根4、D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D【详解】解:观察图形可知图案D通过平移后可以得到故选D【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转5、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围
11、有实数根,当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.6、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6a2=a4,故此选项错误;D、(ab2)3=a3
12、b6,故此选项正确故选D考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方7、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键8、A【解析】试题分析:在计算器上依次按键转化为算式为=-1.414;计算可得结果介于2与1之间故选A考点:1、计算器数的开方;2、实数与数轴9、B【解析】试题解析:菱形ABCD的对
13、角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B10、C【解析】根据主视图、左视图、俯视图的定义,可得答案【详解】球的三视图都是圆,故选C【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据中位数的定义找出第20和21个数的平均数,即可得出答案【详解】解:该班有40名同学,这个班同学年龄的中位数是第20和21个数的平均数14岁的有1人,1岁的有21人,这个班同学年龄的中位数是1岁【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中
14、间两个数的平均数),熟练掌握中位数的定义是本题的关键12、1【解析】根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值【详解】点(a,b)在一次函数y=2x-1的图象上,b=2a-1,2a-b=1,4a-2b=6,4a-2b-1=6-1=1,故答案为:1【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答13、(1)x1;(2)x2;(1)见解析;(4)2x1;【解析】(1)先移项,再合并同类项,求出不等式1的解集即可;(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;(1)把两不等式的解集在数轴上表示出来即可
15、;(4)根据数轴上不等式的解集,求出其公共部分即可.【详解】(1)解不等式,得:x1;(2)解不等式,得:x2;(1)把不等式和的解集在数轴上表示出来如下:(4)原不等式组的解集为:2x1,故答案为:x1、x2、2x1【点睛】本题主要考查一元一次不等式组的解法及在数轴上的表示。14、【解析】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率15、【解析】试题分析:,解得r=考点:弧长的计算16、3(x+2)(x-2)【解析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x212因式分解先提公因式3,再利用平方差公式因式分解.【详解】3x212=3()=317、250
16、【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高三、解答题(共7小题,满分69分)18、 (1)-2 (2)-【解析】试题分析:(1)将原式第一项被开方数8变为42,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项
17、利用负指数公式化简,把所得的结果合并即可得到最后结果; (2)先把和a2b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值解:(1)2sin45+(2)0()1=22+13=2+13=2;(2)(a2b2)=(a+b)(ab)=a+b,当a=,b=2时,原式=+(2)=19、每台电脑0.5万元;每台电子白板1.5万元【解析】先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【详解】设每台电脑x万元,每台电子白板y万元根据题意,得: 解得,答:每台电脑0.5万元,每台电子
18、白板1.5万元【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组20、 (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解【详解】解:(1)被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,中位数为=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)第一次调查时,平均每天的非机动车逆向行驶
19、的次数为=7(次),第一次调查时,平均每天的非机动车逆向行驶的次数3次【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、(1);(2)【解析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【详解】解:(1)垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共
20、有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比22、(1)3;(2);(3)【解析】(1)把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在
21、上,分析图形即可【详解】(1)点在直线上,点的“理想值”=-3,故答案为:3.当点在与轴切点时,点的“理想值”最小为0.当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,设点Q(x,y),与x轴切于A,与OQ切于Q,C(,1),tanCOA=,COA=30,OQ、OA是的切线,QOA=2COA=60,=tanQOA=tan60=,点的“理想值”为,故答案为:.(2)设直线与轴、轴的交点分别为点,点,当x=0时,y=3,当y=0时,x+3=0,解得:x=,tanOAB=,如图,作直线当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值作轴于点,的半径为1,如图当与直线相
22、切时,LQ=,相应的圆心满足题意,其横坐标取到最小值作轴于点,则设直线与直线的交点为直线中,k=,点F与Q重合,则的半径为1,由可得,的取值范围是 (3)M(2,m),M点在直线x=2上,LQ取最大值时,=,作直线y=x,与x=2交于点N,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=x得:y=4,NE=4,OE=2,ON=6,MQN=NEO=90,又ONE=MNQ,即,解得:r=.最大半径为.【点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论23、(1)y=x2+
23、2x+3;(2)DE+DF有最大值为;(3)存在,P的坐标为(,)或(,);t【解析】(1)设抛物线解析式为y=a(x+1)(x3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),得出DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,即可解答(3)过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答观察函数图象与ACQ为锐
24、角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;(2)当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,x2+2x+3),DFAC,DFG=ACO,易知抛物线对称轴为x=1,DG=x-1,DF=(x-1),DE+DF=x2+2x+3+(x-1)=x2+(2+)x+3-,当x=,DE+DF有最大值为; 答图1 答图2(
25、3)存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(1,0)代入得n=,直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);t【点睛】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.24、(1);(2);(3)【解析】(1)根据定义可知ABCABC,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形是矩形,得出,进而得出,根据30直角三角形的性质即可得出答案;(3)根据四边形 ABBC为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案【详解】解:(1)ABC的边长变为了ABC的n倍,ABCABC,故答案为:(2)四边形是矩形,在中,(3)若四边形 ABBC为正方形,则,又在ABC中,AB=,故答案为:【点睛】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解,n的意义是解题的关键
限制150内