2023届浙江省杭州市保俶塔中学中考数学仿真试卷含解析.doc
《2023届浙江省杭州市保俶塔中学中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省杭州市保俶塔中学中考数学仿真试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知A、B两点的坐标分别为(2,0)、(0,1),C 的圆心坐标为(0,1),半径为1若D是C上的一个动点,射线AD与y轴交于点E,则ABE面积的最大值是A3BCD42在ABC中,点D、E分别在AB、AC上,如果AD2,BD3,那么由下列条件
2、能够判定DEBC的是( )ABCD3如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD4关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D05在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D116甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千
3、米/时由题意列出方程其中正确的是()ABCD7如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:ab0;ab;sin=;不等式kxax2+bx的解集是0x1其中正确的是()ABCD8如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D229如图,ABCD,点E在线段BC上,若140,230,则3的度数是()A70B60C55D5010已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或311如图,点C、D是线段AB上的两
4、点,点D是线段AC的中点若AB=10cm,BC=4cm,则线段DB的长等于()A2cmB3cmC6cmD7cm12如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE5cm, 且tanEFC,那么矩形ABCD的周长_cm14如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为_151017年11月7日,山西省人民政府批准发布的山西省第一次全国地理国情普查公报显示,山西省国土面积
5、约为156700km1,该数据用科学记数法表示为_km116方程的根是_17一个凸多边形的内角和与外角和相等,它是_边形18已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;,c是关于x的一元二次方程的两个实数根;其中正确结论是_填写序号三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若ABC的面积为4,求的解析式20(6分)反比例函数y=(k0)与一次函数y=mx+b(m0)交于点A(1,2k1)求反比例函数的解析式;若一次函
6、数与x轴交于点B,且AOB的面积为3,求一次函数的解析式21(6分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y的图象上的两点,且x1x2,y1h时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(
7、舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键11、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.12、C【解析】过点A作AFDE于F,根
8、据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30,在AFD与DCE中C=AFD=90,ADF=DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相
9、等可得AF=AB二、填空题:(本大题共6个小题,每小题4分,共24分)13、36.【解析】试题分析:AFE和ADE关于AE对称,AFED90,AFAD,EFDE.tanEFC,可设EC3x,CF4x,那么EF5x,DEEF5x.DCDECE3x5x8x.ABDC8x.EFCAFB90, BAFAFB90,EFCBAF.tanBAFtanEFC,.AB8x,BF6x.BCBFCF10x.AD10x.在RtADE中,由勾股定理,得AD2DE2AE2.(10x)2(5x)2(5)2.解得x1.AB8x8,AD10x10.矩形ABCD的周长8210236.考点:折叠的性质;矩形的性质;锐角三角函数;勾
10、股定理.14、【解析】根据ABC、EFD都是等边三角形,可证得AEFBDECDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出AEF的内切圆半径【详解】解:如图1,I是ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,AD=AE=(AB+AC)-(BD+CE)= (AB+AC)-(BF+CF)=(AB+AC-BC),如图2,ABC,DEF都为正三角形,AB=BC=CA,EF=FD=DE,BAC=B=C=FED=EFD=EDF=60,1+2=2+3=120,1=3;在AEF和CFD中,AEF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 浙江省 杭州市 保俶塔 中学 中考 数学 仿真 试卷 解析
限制150内