2023届浙江省金华市重点达标名校中考数学猜题卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023届浙江省金华市重点达标名校中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省金华市重点达标名校中考数学猜题卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1化简(a2)a5所得的结果是( )Aa7Ba7Ca10Da102李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时)22.533.54学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( )A众数是8B中位数是
2、3C平均数是3D方差是0.343如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b的解集为Ax1B2x1C2x0或x1Dx24ABC在正方形网格中的位置如图所示,则cosB的值为( )ABCD25如图,直线ABCD,C44,E为直角,则1等于()A132B134C136D1386下列运算正确的是()A(a2)4=a6Ba2a3=a6CD7在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )ABCD8如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF,AC与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DAF15时,AEF为等边
3、三角形;当EAF60时,SABESCEF,其中正确的是()ABCD9有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种10如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,ACAB,且AC=AB,则点C的坐标为()A(2,1)B(1,2)C(1,3)D(3,1)二、填空题(共7小题,每小题3分,满分21分)11如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216的扇形,则r的值为 12已知一组数据1,2,0,1,x,1的平均数是1,则这组数据的中位数为_13已知一
4、个正数的平方根是3x2和5x6,则这个数是_14因式分解:_15将多项式因式分解的结果是 16两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则AOB等于 _ 度17如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60,COB=45,则OC= 三、解答题(共7小题,满分69分)18(10分)如图1,已知ABC是等腰直角三角形,BAC90,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG试猜想线段BG和AE的数量关系是_;将正方形DEFG绕点D逆时针方向旋转(0360),判断(1)中的结论是否仍然成立?请利
5、用图2证明你的结论;若BCDE4,当AE取最大值时,求AF的值19(5分)有这样一个问题:探究函数y2x的图象与性质小东根据学习函数的经验,对函数y2x的图象与性质进行了探究下面是小东的探究过程,请补充完整:(1)函数y2x的自变量x的取值范围是_;(2)如表是y与x的几组对应值x43.532101233.54y 0m则m的值为_;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质_20(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A不超过5
6、天”、“B6天”、“C7天”、“D8天”、“E9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?21(10分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N
7、,若NMNP,求n的值22(10分)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过D作DEAC,垂足为E证明:DE为O的切线;连接OE,若BC4,求OEC的面积23(12分)计算:21+|+2cos3024(14分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解: (-a2)a5=-a7.故选B.点睛:本题考查了
8、同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.2、B【解析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可【详解】解: A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=,所以此选项不正确;D、S2=(23.35)2+2(2.53.35)2+8(33.35)2+6(3.53.35)2+3(43.3
9、5)2=0.2825,所以此选项不正确;故选B【点睛】本题考查方差;加权平均数;中位数;众数3、C【解析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,由图象可得:-2x0或x1,故选C【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答4、A【解析】解:在直角ABD中,BD=2,AD=4,则AB=,则cosB=故选A5、B【解析】过E
10、作EFAB,求出ABCDEF,根据平行线的性质得出C=FEC,BAE=FEA,求出BAE,即可求出答案解:过E作EFAB,ABCD,ABCDEF,C=FEC,BAE=FEA,C=44,AEC为直角,FEC=44,BAE=AEF=9044=46,1=180BAE=18046=134,故选B“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键6、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂
11、的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.7、D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-10可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1故选D【点睛】本题考查学生对计算程序及函数性质的理解根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解8、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂
12、直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(HL),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,B
13、E+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正确)当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 浙江省 金华市 重点 达标 名校 中考 数学 猜题卷含 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内