2023届湖南省娄底新化县联考中考试题猜想数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023届湖南省娄底新化县联考中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省娄底新化县联考中考试题猜想数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一个正多边形的内角和为900,那么从一点引对角线的条数是()A3B4C5D62函数的自变量x的取值范围是( )ABCD3下列图形中,既是中心对称图形又是轴对称图形的是 ( )ABCD4下列
2、运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x45下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)236如图,在半径为5的O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()ABCD7下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是( )年龄/岁13141516频数515x10- xA平均数、中位数B众数、方差C平均数、方差D众数、中位数8规定:如果关于x的一元二次方程ax2+bx+c=0(a
3、0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论: 方程x2+2x8=0是倍根方程;若关于x的方程x2+ax+2=0是倍根方程,则a=3;若关于x的方程ax26ax+c=0(a0)是倍根方程,则抛物线y=ax26ax+c与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程上述结论中正确的有( )ABCD9如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)
4、B(3,1)C(2,2)D(4,2)10解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=411如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )ABCD12已知函数的图象与x轴有交点则的取值范围是( )Ak4Bk4Ck4且k3Dk4且k3二、填空题:(本大题共6个小题,每小题4分,共24分)13不等式-1的正整数解为_.14用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为_.15将一副直角三角板如图放置,使含30角的三角板的短直角边和含45角的三角
5、板的一条直角边重合,则1的度数为_度16如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 17双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 18某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解方程组 20(6分)如图,在中,点D是BC上任意一点,将线段AD
6、绕点A逆时针方向旋转,得到线段AE,连结EC依题意补全图形;求的度数;若,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路21(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率22(8分)如图,在平面直角坐标
7、系中,AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2)以点O为旋转中心,将AOB逆时针旋转90,得到A1OB1画出A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度23(8分)已知:如图,在ABC中,AB13,AC8,cosBAC,BDAC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F(1)求EAD的余切值;(2)求的值24(10分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E求证:AFECDF;若AB=4,BC=8,求图中阴影部分的面积25(10分)如果a2+2a-1=0,求代数式的值.26(12分)科研所计划建一幢宿舍楼,因
8、为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到
9、宿含楼的距离小于等于3km,求m的范围?27(12分)如图,经过点C(0,4)的抛物线()与x轴相交于A(2,0),B两点(1)a 0, 0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】n边形的内角和可以表示成(n-2)180,设
10、这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180=900,解得:n=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.2、D【解析】根据二次根式的意义,被开方数是非负数【详解】根据题意得,解得故选D【点睛】本题考查了函数自变量的取值范围的确定和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次
11、根式时,被开方数非负数3、C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.4、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.5、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握
12、,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为6、D【解析】解:作直径AD,连结BD,如图AD为直径,ABD=90在RtABD中,AD=10,AB=6,BD=8,cosD=C=D,cosC=故选D点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了解直角三角形7、D【解析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【详解】年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,由表中数据可知人数最多的是年
13、龄为14岁的,共有15人,合唱团总人数为30人,合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.8、C【解析】分析:通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;设=2,得到=2=2,得到当=1时,=2,当=1时,=2,于是得到结论;根据“倍根方程”的定义即可得到结论;若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;详解:由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=2, 2,或2,方程-2x-8=0不是倍根方程;故错误;关于x的方程+ax+2=0是倍根方程, 设=2, =
14、2=2, =1,当=1时,=2, 当=1时,=2, +=a=3, a=3,故正确;关于x的方程a-6ax+c=0(a0)是倍根方程, =2,抛物线y=a-6ax+c的对称轴是直线x=3, 抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故正确;点(m,n)在反比例函数y=的图象上, mn=4, 解m+5x+n=0得=,=, =4, 关于x的方程m+5x+n=0不是倍根方程;故选C点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键9、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 湖南省 娄底 新化县 联考 中考 试题 猜想 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内