《2023届绥化市重点中学中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届绥化市重点中学中考二模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于的叙述正确的是()A=B在数轴上不存在表示的点C=D与最接近的整数是32计算的结果为()A2B1C0D13某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,
2、依题意列方程为( )ABCD4方程有两个实数根,则k的取值范围是( )Ak1Bk1Ck1Dk15如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到ACB,则tanB的值为( )ABCD6某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD7的倒数是( )AB3CD84的平方根是( )A4B4C2D29将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )ABCD10已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的
3、是()Ab24acBax2+bx+c6C若点(2,m)(5,n)在抛物线上,则mnD8a+b=011商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元12下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13把多项式x325x分解因式的结果是_14如图,AB=AC,要使ABEACD,应添加的条件是 (添加一个条件即可)15计算:a6a3=_16若一个等腰三角形的周长为26,一边长为6,则它的腰长为_17点 C 在射线 AB上,
4、若 AB=3,BC=2,则AC为_18在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1x2+y1y2=0,那么与互相垂直,下列四组向量:=(2,1),=(1,2);=(cos30,tan45),=(1,sin60);=(,2),=(+,);=(0,2),=(2,1)其中互相垂直的是_(填上所有正确答案的符号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算:()1+(2018)04cos30(2)解不等式组:,并把它的解集在数轴上表示出来20(6分)今年
5、义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?21(6分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下
6、购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?22(8分)如图,抛物线yx2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m当MBABDE时,求点M的坐标;过点M作MNx轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将PMN沿着MN翻折,得QMN,若四边形MPNQ恰好为正方形,直接写出m的值23(8分)已知,
7、平面直角坐标系中的点A(a,1),taba2b2(a,b是实数)(1)若关于x的反比例函数y过点A,求t的取值范围(2)若关于x的一次函数ybx过点A,求t的取值范围(3)若关于x的二次函数yx2+bx+b2过点A,求t的取值范围24(10分)如果想毁掉一个孩子,就给他一部手机!这是2017年微信圈一篇热传的文章国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,的统计图,已知“查资料”的人数是40人请你根据以上信息解答下
8、列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数25(10分)先化简,再求值:,其中m是方程x22x30的根26(12分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围27(12分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPS
9、BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D,与最接近的整数是=1故选D【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题
10、的关键.2、B【解析】按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=,故选择B.【点睛】本题考查了分式的运算规则.3、A【解析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:A【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可4、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的取值范围是k1故选D5、D【解析】过C点作CDAB,垂足为
11、D,根据旋转性质可知,B=B,把求tanB的问题,转化为在RtBCD中求tanB【详解】过C点作CDAB,垂足为D根据旋转性质可知,B=B在RtBCD中,tanB=,tanB=tanB=故选D【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法6、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.7、A【解析】解:的倒数是故选A【点睛】本题考查倒数,掌握概念正确计算是解题关键8、C【解析】根据平方根的定义,求数a的平方根
12、,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题【详解】(1)1=4,4的平方根是1故选D【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根9、A【解析】根据二次函数的平移规律即可得出【详解】解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为故答案为:A【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律10、C【解析】观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称
13、轴为x=4,因为4-2=2,5-4=1,且12,所以可得mn,选项C错误; 因对称轴 ,即可得8a+b=0,选项D正确,故选C.点睛:本题主要考查了二次函数y=ax2+bx+c图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中11、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键12、B【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面
14、看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误故选:B【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力二、填空题:(本大题共6个小题,每小题4分,共24分)13、x(x+5)(x5)【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可
15、详解:x3-25x=x(x2-25)=x(x+5)(x-5)故答案为x(x+5)(x-5)点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键14、AE=AD(答案不唯一)【解析】要使ABEACD,已知AB=AC,A=A,则可以添加AE=AD,利用SAS来判定其全等;或添加B=C,利用ASA来判定其全等;或添加AEB=ADC,利用AAS来判定其全等等(答案不唯一)15、a1【解析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6a1=a61=a1故答案是a1【点睛】同底数幂的除法运算性质16、1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情
16、况进行分析求解【详解】当6为腰长时,则腰长为6,底边=26-6-6=14,因为146+6,所以不能构成三角形;当6为底边时,则腰长=(26-6)2=1,因为6-616+6,所以能构成三角形;故腰长为1故答案为:1【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验17、2或2【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,AB=3,BC=2,AC=ABBC=3-2=2;(2)当点C在线段AB的延长线上时,如图,AB=3,BC=2,AC=AB+BC=3+2=2 故答案为2或2点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想
17、,体现了思维的严密性,在今后解决类似的问题时,要防止漏解18、【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:2(1)+12=0,与垂直; 与不垂直. 与垂直. 与垂直.故答案为:.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:
18、,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.20、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案见解析【解析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论【详解】(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+33x=550,x=50,经检验,符合题意,3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(
19、y为正整数),则垃圾箱为(100y)个,根据题意得,意, y为正整数,y为50,51,52,共3中方案;有三种方案:温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,设总费用为w元W=50y+150(100y)=100y+15000,k=-100,w随y的增大而减小当y=52时,所需资金最少,最少是9800元【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键21、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价
20、是2480元【解析】(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;(3)设进价为y元,根据售价-进价=利润,则可得出方程即可【详解】解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等根据题意,得300+0.8xx,解得x1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等;当顾客消费少于1500元时,300+0.8xx不买卡合算;当顾客消费大于1500元时,300+0.8xx买卡合算;(2)小张买卡
21、合算,3500(300+35000.8)400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+35000.8)y25%y,解得 y2480答:这台冰箱的进价是2480元【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键22、(1)(1,4)(2)点M坐标(,)或(,);m的值为 或【解析】(1)利用待定系数法即可解决问题;(2)根据tanMBA=,tanBDE=,由MBA=BDE,构建方程即可解决问题;因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-
22、m2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B(3,0),C(0,3)代入y=x2+bx+c,得到,解得,抛物线的解析式为y=x2+2x+3,y=x2+2x1+1+3=(x1)2+4,顶点D坐标(1,4);(2)作MGx轴于G,连接BM则MGB=90,设M(m,m2+2m+3),MG=|m2+2m+3|,BG=3m,tanMBA=,DEx轴,D(1,4),DEB=90,DE=4,OE=1,B(3,0),BE=2,tanBDE=,MBA=BDE,=,当点M在x轴上方时, =,解得m=或3(舍弃),M(,),当点M在x轴下方时, =,解得m=或m=3(舍弃),点M(,)
23、,综上所述,满足条件的点M坐标(,)或(,);如图中,MNx轴,点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|m2+2m+3|=|1m|,当m2+2m+3=1m时,解得m=,当m2+2m+3=m1时,解得m=,满足条件的m的值为或.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题23、(1)t;(2)t3;(3)t1【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的
24、求法得到t的取值范围(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围【详解】解:(1)把A(a,1)代入y得到:1,解得a1,则taba2b2b1b2(b)2因为抛物线t(b)2的开口方向向下,且顶点坐标是(,),所以t的取值范围为:t;(2)把A(a,1)代入ybx得到:1ab,所以a,则taba2b2(a2+b2)+1(b+)2+33,故t的取值范围为:t3;(3)把A(a,1)代入yx2+bx+b2得到:1a2+ab+b2,所以ab1(a2+b2)
25、,则taba2b212(a2+b2)1,故t的取值范围为:t1【点睛】本题考查了反比例函数、一次函数以及二次函数的性质代入求值时,注意配方法的应用24、(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果【详解】(1)根据题意得:1(40%+18%+7%)35%,则“玩游戏”对应的圆心角度数是36035%126,故答案为35%,126;(2)根据题意得:4040%100(人),3小
26、时以上的人数为100(2+16+18+32)32(人),补全图形如下:;(3)根据题意得:21001344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.25、原式=,当m=l时,原式=【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可解:原式=x2+2x-3=0, x1=-3,x2 =1m是方程x2 +2x-3=0的根, m=-3或m
27、=1 m+30, .m-3, m=1 当m=l时,原式: “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入26、(1)k1;(2)当4k1时,抛物线与x轴有且只有一个公共点【解析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物
28、线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k2且1+k2,解得4k1,综上,当4k1时,抛物线与x轴有且只有一个公共点【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.27、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|
29、n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键
限制150内