《2023届江苏省句容市十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省句容市十校联考最后数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1已知一组数据a,b,c的平均数为5,方差为4,那么数据
2、a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,42数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|c|,bc0,则原点的位置()A点A的左侧B点A点B之间C点B点C之间D点C的右侧3甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个4四个有理数
3、1,2,0,3,其中最小的是( )A1 B2 C0 D35如图,ABC中,ADBC,AB=AC,BAD=30,且AD=AE,则EDC等于()A10B12.5C15D206对于反比例函数y=,下列说法不正确的是()A图象分布在第二、四象限B当x0时,y随x的增大而增大C图象经过点(1,2)D若点A(x1,y1),B(x2,y2)都在图象上,且x1x2,则y1y27的负倒数是()AB-C3D38如图,、是的切线,点在上运动,且不与,重合,是直径,当时,的度数是()ABCD9在平面直角坐标系中,将点 P (4,2)绕原点O 顺时针旋转 90,则其对应点Q 的坐标为( )A(2,4)B(2,4)C(2
4、,4)D(2,4)10如图,在中,的垂直平分线交于点,垂足为如果,则的长为( )A2B3C4D6二、填空题(本大题共6个小题,每小题3分,共18分)11已知AB=AC,tanA=2,BC=5,则ABC的面积为_.12已知一个多边形的每一个内角都是,则这个多边形是_边形.13如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=30,则2=_14如图,在RtABC中,B90,AB3,BC4,将ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB _15如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长
5、交另一支于点B,以AB为斜边作等腰直角ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分ABC时,点A的坐标为_16如图,在等腰RtABC中,BAC90,ABAC,BC4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为_三、解答题(共8题,共72分)17(8分)如图 1,在等腰ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD在线段 AD 上任取一点 P,连接 PB,PE若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y小明根据学习函数的经验,对函数
6、y 随自变量x 的变化而变化的规律进行了探究 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:x0123456y5.2 4.24.65.97.69.5说明:补全表格时,相关数值保留一位小数(参考数据:1.414,1.732,2.236)(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置18(8分)计算:22+|14sin60|19(8分)如图,在ABCD中,DEAB,BFCD,垂足分别为E,F求证:ADECBF;求证:四边
7、形BFDE为矩形20(8分)如图,是菱形的对角线,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数21(8分)在ABC中,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图,连接AD,若,求B的大小;如图,若点F为的中点,的半径为2,求AB的长 22(10分)作图题:在ABC内找一点P,使它到ABC的两边的距离相等,并且到点A、C的距离也相等(写出作法,保留作图痕迹)23(12分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EF
8、x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数m的变化范围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标24在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q
9、,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.2、C【解析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;B选项中,若原点在A、B之间,则b0,c0,这与bc0不符,故不能选B;C选项中,若原点在B、C之间,则且bc0,与已知条件一致,故可以选C;D选项中,若原点在点C右侧,则b0,c0,这与bc0不符
10、,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.3、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则
11、H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态4、D【解析】解:1102,最小的是1故选D5、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30,DAC=BAD=30,AD=AE(已知),ADE=75EDC=90-ADE=15故选C考点:本题主要考查了等腰三角形的性质,三角
12、形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合6、D【解析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.7、D【解析】根据倒数的定义,互为倒数的两数乘积为1,2=1再求出2的相反数即可解答【详解】根
13、据倒数的定义得:2=1因此的负倒数是-2故选D【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.8、B【解析】连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得【详解】解,连结OB,、是的切线,则,四边形APBO的内角和为360,即,又,故选:B【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答9、A【解析】首先求出MPO=QON,利用AAS证明PMOONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标【详解】作图如下,MPO+POM=90,QON+POM=90
14、,MPO=QON,在PMO和ONQ中, ,PMOONQ,PM=ON,OM=QN,P点坐标为(4,2),Q点坐标为(2,4),故选A【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等10、C【解析】先利用垂直平分线的性质证明BE=CE=8,再在RtBED中利用30角的性质即可求解ED【详解】解:因为垂直平分,所以,在中,则;故选:C【点睛】本题主要考查了线段垂直平分线的性质、30直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】作CDAB,由tanA=2,设AD=x,CD=2
15、x,根据勾股定理AC=x,则BD=,然后在RtCBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则SABC=【详解】如图作CDAB,tanA=2,设AD=x,CD=2x,AC=x,BD=,在RtCBD中BC2=BD2+CD2,即52=4x2+,x2=,SABC=【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.12、十【解析】先求出每一个外角的度数,再根据边数=360外角的度数计算即可【详解】解:180144=36,36036=1,这个多边形的边数是1故答案为十【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键13、75【解析】试题
16、解析:直线l1l2, 故答案为14、1.5【解析】在RtABC中,将ABC折叠得ABE,ABAB,BEBE,BC531设BEBEx,则CE4x在RtBCE中,CE1BE1BC1,(4x)1x111解之得15、(,)【解析】分析:连接OC,过点A作AEx轴于E,过点C作CFx轴于F,则有AOEOCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a0),由可求出a值,进而得到点A的坐标详解:连接OC,过点A作AEx轴于E,过点C作CFx轴于F,如图所示ABC为等腰直角三角形,OA=OC,OCAB,AOE+COF=90COF+OCF=90,AOE=OCF在AO
17、E和OCF中,AOEOCF(AAS),AE=OF,OE=CFBP平分ABC,设点A的坐标为(a,),解得:a=或a=-(舍去),=,点A的坐标为(,),故答案为:(,)点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键16、2【解析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到AED=90,接着由AEB=90得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在RtAOC中利用勾股定理计算出OC=
18、2,从而得到CE的最小值为22.【详解】连结AE,如图1,BAC=90,AB=AC,BC=,AB=AC=4,AD为直径,AED=90,AEB=90,点E在以AB为直径的O上,O的半径为2,当点O、E. C共线时,CE最小,如图2在RtAOC中,OA=2,AC=4,OC=,CE=OCOE=22,即线段CE长度的最小值为22.故答案为:22.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.三、解答题(共8题,共72分)17、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.【解析】(1)取点后测量
19、即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.18、-1【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案【详解】解:原式1【点睛】此题主要考查了实数运算以及特殊
20、角的三角函数值,正确化简各数是解题关键19、(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到CDE为直角,利用三个角为直角的四边形为矩形即可的值【详解】解:(1)DEAB,BFCD,AED=CFB=90,四边形ABCD为平行四边形,AD=BC,A=C,在ADE和CBF中,ADECBF(AAS);(2)四边形ABCD为平行四边形,CDAB,CDE+DEB=180,DEB=90,CDE=90,CDE=DEB=BFD=90,则
21、四边形BFDE为矩形【点睛】本题考查1矩形的判定;2全等三角形的判定与性质;3平行四边形的性质20、(1)答案见解析;(2)45【解析】(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据DBFABDABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)四边形ABCD是菱形,ABDDBCABC75,DCAB,AC,ABC150,ABC+C180,CA30EF垂直平分线段AB,AFFB,AFBA30,DBFABDFBE45【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题21、 (1)B=40;(2)AB= 6
22、.【解析】(1)连接OD,由在ABC中, C=90,BC是切线,易得ACOD,即可求得CAD=ADO,继而求得答案;(2)首先连接OF,OD,由ACOD得OFA=FOD,由点F为弧AD的中点,易得AOF是等边三角形,继而求得答案.【详解】解:(1)如解图,连接OD,BC切O于点D,ODB=90,C=90,ACOD,CAD=ADO,OA=OD,DAO=ADO=CAD=25,DOB=CAO=CADDAO=50,ODB=90,B=90DOB=9050=40;(2)如解图,连接OF,OD,ACOD,OFA=FOD,点F为弧AD的中点,AOF=FOD,OFA=AOF,AF=OA,OA=OF,AOF为等边
23、三角形,FAO=60,则DOB=60,B=30,在RtODB中,OD=2,OB=4,AB=AOOB=24=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明AOF为等边三角形是解(2)的关键.22、见解析【解析】先作出ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点【详解】以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;连接AF,则直线AF即为ABC的角平分线;连接AC
24、,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;连接FH交BF于点M,则M点即为所求【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键23、(1)yx22x3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,2)【解析】(1)把点A(1,0),C(0,3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CHEF于H,设N的坐标为(1,n),证明RtNCHMNF,可得mn2+3n+1,因为4n0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(x1,y1),设直线HQ表达式为yax+t,用待定系数法和韦
25、达定理可求得ax2x1,t2,即可得出直线QH过定点(0,2)【详解】解:(1)抛物线yx2+bx+c经过点A、C,把点A(1,0),C(0,3)代入,得:,解得,抛物线的解析式为yx22x3;(2)如图,作CHEF于H,yx22x3(x1)24,抛物线的顶点坐标E(1,4),设N的坐标为(1,n),4n0MNC90,CNH+MNF90,又CNH+NCH90,NCHMNF,又NHCMFN90,RtNCHMNF,即解得:mn2+3n+1,当时,m最小值为;当n4时,m有最大值,m的最大值1612+11m的取值范围是(3)设点P(x1,y1),Q(x2,y2),过点P作x轴平行线交抛物线于点H,H
26、(x1,y1),ykx+2,yx2,消去y得,x2kx20,x1+x2k,x1x22,设直线HQ表达式为yax+t,将点Q(x2,y2),H(x1,y1)代入,得,y2y1a(x1+x2),即k(x2x1)ka,ax2x1,( x2x1)x2+t,t2,直线HQ表达式为y( x2x1)x2,当k发生改变时,直线QH过定点,定点坐标为(0,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键24、(1)详见解析;(1)详见解析;BP=AB【解析】(1)根据要求画出图形即可;
27、(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
限制150内