2023届浙江省临海市~重点名校中考数学五模试卷含解析.doc
《2023届浙江省临海市~重点名校中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省临海市~重点名校中考数学五模试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD2在实数3.5、0、4中,最小的数是()A3.5BC0D43下列实数为无理数的是 ( )A-5
2、BC0D4O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D85在RtABC中,ACB=90,AC=12,BC=9,D是AB的中点,G是ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()Ar5Br5Cr10D5r106如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是( ) A16cmB18cmC20cmD21cm7已知O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若POC为直角三角形,则PB的长度()A1B5C1或5D2或482017年牡丹区
3、政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为()A3.38107B33.8109C0.338109D3.3810109某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A0.637105 B6.37106 C63.7107 D6.3710710已知抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:4a+2b0; 1a; 对于任意实数m,a+bam
4、2+bm总成立;关于x的方程ax2+bx+cn1有两个不相等的实数根其中结论正确的个数为()A1个B2个C3个D4个二、填空题(共7小题,每小题3分,满分21分)11已知扇形AOB的半径OA=4,圆心角为90,则扇形AOB的面积为_.12如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OEOF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_13袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_个14如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_1
5、5已知m、n是一元二次方程x2+4x10的两实数根,则_16某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李17如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_三、解答题(共7小题,满分69分)18(10分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:FD=CD;(2)若AE=8,tanE=,求O的半径19(5分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1
6、 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程20(8分)-()-1+3tan6021(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A由父母一方照看;B由爷爷奶奶照看;C由叔姨等近亲照看;D直接寄宿学校某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计
7、该校将有多少名留守学生在此关爱活动中受益?22(10分)先化简,再求值:2(m1)2+3(2m+1),其中m是方程2x2+2x1=0的根23(12分)如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于点F,求证:BE+BF=2,求出四边形OEBF的面积. 24(14分)x取哪些整数值时,不等式5x23(x1)与x2x都成立?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】此
8、题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.2、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则3、D【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、5是整数,是有理数,选项错误;B、是
9、分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、是无理数,选项正确.故选D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、C【解析】根据题意可以求出这个正n边形的中心角是60,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.5、D【解析】延长CD交D于点E,ACB=90,AC=12,BC=9,AB=15,D是AB中点,CD=,G是A
10、BC的重心,CG=5,DG=2.5,CE=CD+DE=CD+DF=10,C与D相交,C的半径为r, ,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.6、C【解析】试题分析:已知,ABE向右平移2cm得到DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm故答案选C考点:平移的性质.7、C【解析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股
11、定理得到OD=1,若POC为直角三角形,只能是OPC=90,则根据相似三角形的性质得到PD=2,于是得到结论【详解】点C是劣弧AB的中点,OC垂直平分AB,DA=DB=3,OD=,若POC为直角三角形,只能是OPC=90,则PODCPD,PD2=41=4,PD=2,PB=32=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,PB的长度为1或5.故选C【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键8、D【解析】根据科学记数法的定义可得到答案【详解】338亿=33800000000=,故选D.【点睛】把一个大于10或者小于1的数表示为的形式,其中1|a|1
12、0,这种记数法叫做科学记数法.9、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论错误;利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1a-,结论正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 浙江省 临海市 重点 名校 中考 数学 试卷 解析
限制150内