《2023届黑龙江省克东县中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省克东县中考数学押题卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元2二次函数的最大值为( )A3B4C5D63中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )ABCD4如图,等腰三角形ABC的底边BC长为4,
2、面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A6B8C10D125如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD6在RtABC中,C90,AB4,AC1,则cosB的值为()ABCD7在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和1,则点C所对应的实数是( )A1+B2+C21D2+18甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利
3、润相同D乙超市在9月份的利润必超过甲超市9已知一个正n边形的每个内角为120,则这个多边形的对角线有()A5条B6条C8条D9条10将一根圆柱形的空心钢管任意放置,它的主视图不可能是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11某校体育室里有球类数量如下表:球类篮球排球足球数量354如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_12已知(x+y)225,(xy)29,则x2+y2_13如图,直线a,b被直线c所截,ab,1=2,若3=40,则4等于_14在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的
4、统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为_ 人15如图,矩形ABCD中,E为BC的中点,将ABE沿直线AE折叠时点B落在点F处,连接FC,若DAF18,则DCF_度16已知线段a4,线段b9,则a,b的比例中项是_三、解答题(共8题,共72分)17(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.18(8分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(
5、11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)19(8分)已知:如图,在ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且AGE=CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求
6、证:BE=BN.20(8分)在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F(1)求证:AEFDEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积21(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由22(10分)A,B两地相距
7、20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值23(12分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O的切线(2)若BC3,CD3,求弦A
8、D的长24如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一
9、元一次方程的应用,根据题意列出方程是解决问题的关键2、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值3、C【解析】根据中心对称图形的概念进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C【点睛】考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC
10、,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论【详解】连接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=16,解得AD=8,EF是线段AC的垂直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+4=8+2=1故选C【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键5、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据
11、等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键6、A【解析】在RtABC中,C=90,AB=4,AC=1,BC= ,则cosB= ,故选A7、D【解析】设点C所对应的实数是x根据中心对称的性质,对称点到对称中心的距离相等,则有,解得.故选D.8、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解
12、】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化9、D【解析】多边形的每一个内角都等于120,则每个外角是60,而任何多边形的外角是360,则求得多边形的边数;再根据多边形一个顶点出发的对角线n3,即可求得对角线的条数【详解】解:多边形的每一个内角都等
13、于120,每个外角是60度,则多边形的边数为360606,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有633条这个多边形的对角线有(63)9条,故选:D【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键10、A【解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视图不可能是故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先求出球的总数,再用足球数除以总数即为所求.【详解】解:一共有球3+5+4=12(个),其中足球有4个,拿出一个球是足球的可能性=.【点睛】本
14、题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.12、17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2=9, x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,.13、70【解析】试题分析:由平角的定义可知,1+2+3=180,又1=2,3=40,所以1=(180-40)2=70,因为b,所以4=1=70.故答案为70.考点:角的计算;平行线的性质.14、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总
15、人数减去其余各组人数可得答案详解:根据题意可知,本年级捐款捐款的同学一共有2025%=80(人),则本次捐款20元的有:80(20+10+15)=35(人),故答案为:35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.15、1【解析】由折叠的性质得:FEBE,FAEBAE,AEBAEF,求出BAEFAE1,由直角三角形的性质得出AEFAEB54,求出CEF72,求出FECE,由等腰三角形的性质求出ECF54,即可得出DCF的度数【详解】解:四边形ABCD是矩形,BADBBCD90,由折叠的性质得:FEBE,FAEBAE,AEBAEF,DAF18,BAEFAE(9018)1,A
16、EFAEB90154,CEF18025472,E为BC的中点,BECE,FECE,ECF(18072)54,DCF90ECF1.故答案为1【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出ECF的度数是解题的关键16、6【解析】根据已知线段a4,b9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案【详解】解:a4,b9,设线段x是a,b的比例中项, ,x2ab4936,x6,x6(舍去)故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答三、解答题(共8题,共72分)
17、17、(1)见解析;(2)见解析;(3)见解析,.【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.18、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得
18、方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC
19、=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)19、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得EAG=FCG,AG=GC结合A
20、GE=FGC可得EAGFCG,从而可得EAGFCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,AGE=CGN可得EAGNCG,则BAC=ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.详解:(1)四边形ABCD为平行四四边形边形,AB/CD. EAG=FCG. 点G为对角线AC的中点,AG=GC. AGE=FGC,EAGFCG. EG=FG. 同理MG=NG.四边形ENFM为平行四边形. (2)四边形ENFM为矩形,EF=MN,且EG=,GN=,EG=NG,又AG=CG,AG
21、E=CGN,EAGNCG,BAC=ACB ,AE=CN,AB=BC,AB-AE=CB-CN,BE=BN.点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.20、(1)证明详见解析;(2)证明详见解析;(3)1【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论; (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形; (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案【详解】(
22、1)证明:AFBC,AFE=DBE,E是AD的中点,AE=DE,在AFE和DBE中,AFEDBE(AAS);(2)证明:由(1)知,AFEDBE,则AF=DBAD为BC边上的中线DB=DC,AF=CDAFBC,四边形ADCF是平行四边形,BAC=90,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,AFBD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,四边形ADCF是菱形,S菱形ADCF=ACDF=45=1【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用21、(1);四边形是菱形,理
23、由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】(1)先确定出点A,B坐标,再利用待定系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论【详解】(1)如图1,反比例函数为,当时,当时,设直线的解析式为, , ,直线的解析式为;四边形是菱形,理由如下:如图2,由知,轴,点是线段的中点,当时,由得,由得,四边形为平行四边形,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时, ,.【点睛】此题是反比例
24、函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键22、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】()由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是101.8=18(km),当甲离开A的距离20km时,甲的行驶时
25、间是2010=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是400.5=20(km),故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.23、(1)证明见解析(2) 【解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论
26、;(2)由CDBCAD,可得,推出CD2=CBCA,可得(3)2=3CA,推出CA=6,推出AB=CABC=3,设BD=k,AD=2k,在RtADB中,可得2k2+4k2=5,求出k即可解决问题【详解】(1)证明:连结OC,如图,AD平分EAC,1=3,OA=OD,1=2,3=2,ODAE,AEDC,ODCE,CE是O的切线;(2)CDO=ADB=90,2=CDB=1,C=C,CDBCAD,CD2=CBCA,(3)2=3CA,CA=6,AB=CABC=3,,设BD=k,AD=2k,在RtADB中,2k2+4k2=5,k=,AD=24、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0
27、)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6,1)分别代入ykx+b,得:,解得:,所以一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时,得到OE12OD4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键
限制150内