《2023届辽宁省铁岭市名校中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省铁岭市名校中考数学模拟精编试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,在ABC中,AC=BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D622某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随
2、机抽取若干同学参加比赛,成绩被制成不完整的统计表如下 成绩人数(频数)百分比(频率)050.2105150.42050.1根据表中已有的信息,下列结论正确的是()A共有40名同学参加知识竞赛B抽到的同学参加知识竞赛的平均成绩为10分C已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D抽到同学参加知识竞赛成绩的中位数为15分3如图,已知ABC中,C=90,若沿图中虚线剪去C,则1+2等于( )A90B135C270D3154如图所示,有一条线段是()的中线,该线段是( ). A线段GHB线段ADC线段AED线段AF5如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交
3、于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:256如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A正比例函数y=kx(k为常数,k0,x0)B一次函数y=kx+b(k,b为常数,kb0,x0)C反比例函数y=(k为常数,k0,x0)D二次函数y=ax2+bx+c(a,b,c为常数,a0,x0)7函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx38如图,为等边三角形,要在外部
4、取一点,使得和全等,下面是两名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确9如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1BCD10将(x+3)2(x1)2分解因式的结果是()A4(2x+2)B8x+8C8(x+1)D 4(x+1)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交A
5、D于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:DFPBPH;PD2=PHCD;,其中正确的是_(写出所有正确结论的序号)12有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_13如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_14如图,sinC,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则BDE周长的最小值为_15化简: =_16四边形ABCD中,向量_.三、解答题(共8题,共72分)17(8分
6、)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率18(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60
7、米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米19(8分)如图所示,已知一次函数(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D若OA=OB=OD=1(
8、1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式20(8分)如图,在平面直角坐标系中,一次函数yx+2的图象交x轴于点P,二次函数yx2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+17(1)求二次函数的解析式和该二次函数图象的顶点的坐标(2)若二次函数yx2+x+m的图象与一次函数yx+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得MAB是以ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由21(8分)先化简代数式,再从1,0,3中选择一个合适的a的值代入求值22(10分)如图,CD是一高为4米的平台,AB是与CD底部
9、相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).23(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.24解不等式组:,并将它的解集在数轴上表示出来.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE1
10、80,即2B180118,解得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB2、B【解析】根据频数频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】50.1=50(名),有50名同学参加知识竞赛,故选项A错误;成绩5分、15分、0分的同学分别有:500.2=10(名),500.4=20(名),50105205=10(名)抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;0分同学10人,其频率为0.2,800名学生,得
11、0分的估计有8000.2=160(人),故选项C错误;第25、26名同学的成绩为10分、15分,抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误故选:B【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.3、C【解析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:四边形的内角和为360,直角三角形中两个锐角和为90,1+2=360(A+B)=36090=270故选:C【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360.4、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得【详解】根据
12、三角形中线的定义知:线段AD是ABC的中线故选B【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线5、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=DE:DC=2:5,SDEF:SABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质6、C【解析】延长AD,BC交于点Q,连接OE,OF,OD,
13、OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到A=B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由FQO与OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到QOE=QOF=A=B,再由切线长定理得到OD与OC分别为EOG与FOG的平分线,得到DOC为EOF的一半,即DOC=A=
14、B,又GCO=FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项【详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,AE,BF为圆O的切线,OEAE,OFFB,AEO=BFO=90,在RtAEO和RtBFO中,RtAEORtBFO(HL),A=B,QAB为等腰三角形,又O为AB的中点,即AO=BO,QOAB,QOB=QFO=90,又OQF=BQO,QOFQBO,B=QOF,同
15、理可以得到A=QOE,QOF=QOE,根据切线长定理得:OD平分EOG,OC平分GOF,DOC=EOF=A=B,又GCO=FCO,DOCOBC,同理可以得到DOCDAO,DAOOBC,ADBC=AOOB=AB2,即xy=AB2为定值,设k=AB2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k0,x0)故选C【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识7、D【解析】由题意得,x10,解得x1故选D8、A【解析】根据题意先画出相应的图形,然后进行推理
16、论证即可得出结论【详解】甲的作法如图一:为等边三角形,AD是的角平分线 由甲的作法可知, 在和中, 故甲的作法正确;乙的作法如图二: 在和中, 故乙的作法正确;故选:A【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键9、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是矩形,BAD=D=90,CD=AB,AG平分BAD,DAG=45,ADG是等腰直角三角形,D
17、G=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.10、C【解析】直接利用平方差公式分解因式即可【详解】(x3)2(x1)2(x3)(x1)(x3)(x1)4(2x2)8(x1)故选C【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】依据FDP=PBD,DFP=
18、BPC=60,即可得到DFPBPH;依据DFPBPH,可得,再根据BP=CP=CD,即可得到;判定DPHCPD,可得,即PD2=PHCP,再根据CP=CD,即可得出PD2=PHCD;根据三角形面积计算公式,结合图形得到BPD的面积=BCP的面积+CDP面积BCD的面积,即可得出【详解】PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH,故正确;DCF=9060=30,tanDCF=,DFPBPH,BP=CP=CD,故正确;PC=DC,DCP=30,CDP=75,又DHP=DCH+CDH=75,DHP=CDP,而D
19、PH=CPD,DPHCPD,即PD2=PHCP,又CP=CD,PD2=PHCD,故正确;如图,过P作PMCD,PNBC,设正方形ABCD的边长是4,BPC为正三角形,则正方形ABCD的面积为16,PBC=PCB=60,PB=PC=BC=CD=4,PCD=30PN=PBsin60=4=2,PM=PCsin30=2,SBPD=S四边形PBCDSBCD=SPBC+SPDCSBCD=42+2444=4+48=44,故错误,故答案为:【点睛】本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.12、【解析】列表得出所有等可能的
20、情况数,找出恰好是两个连续整数的情况数,即可求出所求概率【详解】解:列表如下:567895(6、5)(7、5)(8、5)(9、5)6(5、6)(7、6)(8、6)(9、6)7(5、7)(6、7)(8、7)(9、7)8(5、8)(6、8)(7、8)(9、8)9(5、9)(6、9)(7、9)(8、9)所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)= 故答案为.【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比13、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4
21、,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例14、【解析】作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D,则,此时BDE的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在RtBGK中,可得BG长,表示出BDE的
22、周长等量代换可得其值.【详解】解:如图,作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D,则,此时BDE的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知 ,即四边形为矩形在中, 在RtBGK中, BK=2,GK=6,BG2,BDE周长的最小值为BE+DE+BD=KD+DE+BD=DE+BD+GD=DE+BG=2+2故答案为:2+2【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.15、【解析】先利用除法法则变形,约分后通分并
23、利用同分母分式的减法法则计算即可【详解】原式,故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键16、【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得: =.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.三、解答题(共8题,共72分)17、(1);(2). 【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案【详解】解:(1)共有三根细绳,且抽出每根细绳的可能性相同,甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1
24、的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是18、(1)距离是70米,速度为95米/分;(2)y=35x70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米【解析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为
25、AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+602)2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,1(9560)=35,点F的坐标为(3,35),则,解得,线段EF所在直线的函数解析式为y=35x70;(3)线段FGx轴,甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+607=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+7095x=21,解得,x=1.2,前2分钟3分钟,两机器人相距21米时,由题意得
26、,35x70=21,解得,x=2.14分钟7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米【点睛】本题考查了一次函数的应用,读懂图像是解题关键.19、(1)A(1,0),B(0,1),D(1,0)(2)一次函数的解析式为 反比例函数的解析式为【解析】解:(1)OA=OB=OD=1,点A、B、D的坐标分别为A(1,0),B(0,1),D(1,0)。(2)点A、B在一次函数(k0)的图象上,解得。一次函数的解析式为。点C在一次函
27、数y=x+1的图象上,且CDx轴,点C的坐标为(1,2)。又点C在反比例函数(m0)的图象上,m=12=2。反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。20、(1)yx2+x+2(x)2+,顶点坐标为(,);(2)存在,点M(,0)理由见解析【解析】(1)由根与系数的关系,结合已知条件可得9+4m17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将
28、抛物线表达式和一次函数yx+2联立并解得x0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BMAB交x轴于点M,证得APOMPB,根据相似三角形的性质可得 ,代入数据即可求得MP,再求得OM,即可得点M的坐标为(,0)【详解】(1)由题意得:x1+x23,x1x22m,x12+x22(x1+x2)22x1x217,即:9+4m17,解得:m2,抛物线的表达式为:yx2+x+2(x)2+,顶点坐标为(,);(2)存在,理由:将抛物线表达式和一次函数yx+2联立并解得:x0或,点A、B的坐标为(0,2)、(,),一次函数yx+2与x轴的交点P的坐标为(6,0),
29、点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、PB=,AP=2过点B作BMAB交x轴于点M,MBPAOP90,MPBAPO,APOMPB, , ,MP,OMOPMP6,点M(,0)【点睛】本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题21、,1【解析】先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a3,计算即可得到答案.【详解】原式,当a3时(a1,0),原式1【点睛】本题考查代数式的化简、平方差公式和完全平方公
30、式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.22、6+【解析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正切函数可由AF把CF表达出来,在RtABE中,利用的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CFAB,垂足为F, 设AB=x,则AF=x-4,在RtACF中,tan=,CF=BD ,同理,RtABE中,BE=,BD-BE=DE,-=3,解得x=6+.答:树高AB为(6+)米 .【点睛】作出如图所示的辅助线,利用三角函数把C
31、F和BE分别用含x的式子表达出来是解答本题的关键.23、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形,ADBC,EAO=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形AECF是菱形;(2)设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想24、-1x4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可试题解析:,由得,x4;由得,x1.故不等式组的解集为:1x4.在数轴上表示为:
限制150内