上海中学2023届中考数学全真模拟试卷含解析.doc
《上海中学2023届中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海中学2023届中考数学全真模拟试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则BFC为()A75B60C55D452四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D33如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:254某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A9分 B8分 C7分 D6分5如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD
3、路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A B C D6下列各曲线中表示y是x的函数的是()ABCD7如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A60海里B45海里C20海里D30海里8若x2是关于x的一元二次方程x2axa20的一个根,则a的值为( )A1或4B1或4C1或4D1或49如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在O上,若过点M作O的一条切线MK,切点为K,则M
4、K()A3B2C5D10如图,在ABC中,EFBC,S四边形BCFE=8,则SABC=( )A9B10C12D13二、填空题(本大题共6个小题,每小题3分,共18分)11若am=2,an=3,则am + 2n =_12二次根式在实数范围内有意义,x的取值范围是_13把直线yx3向上平移m个单位后,与直线y2x4的交点在第一象限,则m的取值范围是_.14某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20x30,且x为整数)出售,可卖出(30x)件若使利润最大,每件的售价应为_元15如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,1)为圆心、1为半径的圆上一动点,过Q点的切
5、线交线段AB于点P,则线段PQ的最小是_16如图,点P(3a,a)是反比例函(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的表达式为_三、解答题(共8题,共72分)17(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由18(8分)如图,在O中,AB为直径,OCAB,弦CD与OB交
6、于点F,在AB的延长线上有点E,且EF=ED(1)求证:DE是O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径19(8分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)请判断直线BC与O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长20(8分)如图,AB是O的一条弦,E是AB的中点,过点E作ECOA于点C,过点B作O的切线交CE的延长线于点D(1)求证:DB=DE;(2)若AB=12,BD=5,求O的半径. 21(8分)已知:如图,在矩形纸片ABCD中,翻折矩形纸片,使点A落在对角线DB上的点
7、F处,折痕为DE,打开矩形纸片,并连接EF的长为多少;求AE的长;在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由22(10分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO23(12分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成求该工程队原计划每周修建多少米?24先化简,再求值:x(x+1)(x+1)(x1),其中x=1参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由正方
8、形的性质和等边三角形的性质得出BAE150,ABAE,由等腰三角形的性质和内角和定理得出ABEAEB15,再运用三角形的外角性质即可得出结果【详解】解:四边形ABCD是正方形,BAD90,ABAD,BAF45,ADE是等边三角形,DAE60,ADAE,BAE90+60150,ABAE,ABEAEB(180150)15,BFCBAF+ABE45+1560;故选:B【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键2、D【解析】解:1102,最小的是1故选D3、D【解析】试题分析:先根据平行
9、四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=DE:DC=2:5,SDEF:SABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质4、C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6777899,故中位数为 :7分,故答案为:C.点睛:
10、本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不
11、变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大而减小,h不变,y随x的增大而减小,P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面积的表达式是解题的关键6、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确故选D7、D【解析】根据题意得出:B=30,AP=30海里,APB=90,再利用勾股定理得出BP的长,求出答案【详解】解:由题意可得:B=30,AP=30海里,APB=90,
12、故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键8、C【解析】试题解析:x=-2是关于x的一元二次方程的一个根,(-2)2+a(-2)-a2=0,即a2+3a-2=0,整理,得(a+2)(a-1)=0,解得 a1=-2,a2=1即a的值是1或-2故选A点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根9、B【解析】以OM为直径作圆交O于K,利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 中学 2023 中考 数学 模拟 试卷 解析
限制150内