上海市卢湾区2023年高三二诊模拟考试数学试卷含解析.doc
《上海市卢湾区2023年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市卢湾区2023年高三二诊模拟考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1关于函数有下述四个结论:( )是偶函数; 在区间上是单调递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD2函数在区间上的大致图象如图所示,则可能是( )ABCD3函数在的图象大致为ABCD4已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD5已知数列的首项,且,其中,下列叙述正确的是( )A若是等差数列,则一定有B若是等比数列,则一定有C若不是等差数列,则一定有 D若不是等比数列,则一定有6如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图则下列结论中表述不正确的是( )A从2000年至
3、2016年,该地区环境基础设施投资额逐年增加;B2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.7已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D6748展开项中的常数项为A1B11C-19D519某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上
4、的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )ABCD210将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )A6B8C10D1211M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD212已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD二、填空题:本题共4小题,每小题5分,
5、共20分。13抛物线的焦点到准线的距离为 14各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.15已知均为非负实数,且,则的取值范围为_16如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.() 求函数的单调区间;() 当时,求函数在上最小值.18(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求
6、面积的最小值,并求此时四边形的面积.19(12分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值20(12分)如图在直角中,为直角,分别为,的中点,将沿折起,使点到达点的位置,连接,为的中点()证明:面;()若,求二面角的余弦值21(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到
7、曲线的距离相等,求这三个点的极坐标.22(10分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所
8、以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.2、B【解析】根据特殊值及函数的单调性判断即可;【详解】解:当时,无意义,故排除A;又,则,故排除D;对于C,当时,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.3、A【解析】因为,所以排除C、D当从负方向趋近于0时,可得
9、.故选A4、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.5、C【解析】根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,显然符合是等差数列,但是此时
10、不成立,故本说法不正确;B:当时,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确; D:当 时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.6、D【解析】根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以
11、本题选D.【点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.7、B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解8、B【解析】展开式中的每一项是由每个括号中各出一项组成的,所以可分成三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市 卢湾区 2023 年高 三二诊 模拟考试 数学试卷 解析
限制150内