《2023届黑龙江省松北区达标名校中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省松北区达标名校中考一模数学试题含解析.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或32如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD
2、或A3如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A主视图B俯视图C左视图D一样大4如图,ABCD,点E在CA的延长线上.若BAE=40,则ACD的大小为( )A150B140C130D1205要使分式有意义,则x的取值应满足( )Ax=2Bx2Cx2Dx26下列二次根式,最简二次根式是()ABCD7下列运算正确的是()A5a+2b=5(a+b)Ba+a2=a3C2a33a2=6a5D(a3)2=a58为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这
3、组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是39一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2b+c0 时,x 的取值范围为_.12如图,RtABC 中,C=90 , AB=10,则AC的长为_ .13如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,SAFD=9,则SEFC等于_14如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_15 “
4、五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示第五组被抽到的概率是_16分式方程的解是 17不等式5x33x+5的非负整数解是_三、解答题(共7小题,满分69分)18(10分)(1)解不等式组:;(2)解方程:.19(5分)进入防汛期后,某地对河堤进行了加固该地驻军在河堤加固的工程中出色完成了任务这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数20(8分)如图,在ABCD中,AEBC交边BC于点E,点F为边CD上一点,且DFBE.过点F作FGCD,交边AD于点G.求证:DGDC21(10分)五一期间,小红到郊
5、野公园游玩,在景点P处测得景点B位于南偏东45方向,然后沿北偏东37方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离(结果保留整数)参考数据:sin370.60,cos37=0.80,tan370.7522(10分)A,B两地相距20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(k
6、m)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值23(12分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.24(14分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.求证:四边形是平行四边形.若,则在点的运动过程中:当_时,四边形是矩形;当_时,四边形是菱形.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】由解析式可知该函数在x=h时取得最小值1,xh时,y随x的增大而增大
7、;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键2、B【解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论
8、判断即可【详解】ABBCCD1,当点A为原点时,|a|+|b|2,不合题意;当点B为原点时,|a|+|b|2,符合题意;当点C为原点时,|a|+|b|2,符合题意;当点D为原点时,|a|+|b|2,不合题意;故选:B【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值3、C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C4、B【解析】试题分析:如图,延长DC到F,则ABCD,BAE=40,ECF=BAE=40.ACD=180-ECF=140.故选B考点:1.平行
9、线的性质;2.平角性质.5、D【解析】试题分析:分式有意义,x+10,x1,即x的取值应满足:x1故选D考点:分式有意义的条件6、C【解析】根据最简二次根式的定义逐个判断即可【详解】A,不是最简二次根式,故本选项不符合题意;B,不是最简二次根式,故本选项不符合题意;C是最简二次根式,故本选项符合题意;D,不是最简二次根式,故本选项不符合题意故选C【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键7、C【解析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误
10、;C、2a33a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误故选C【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键8、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数
11、、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.9、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.10、C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可【详解】直线y1kx+b与直线y2mx+n分别交x轴于点A(1,0),B(4,0),不等式(kx+b)(mx+n)0的解集为1x4,故选C【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函
12、数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】分析:题目要求 kx+b0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.详解:kx+b0,一次函数的图像在x 轴上方时,x的取值范围为:x1.故答案为x1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.12、8【解析】在RtABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】RtABC中,C=90,AB=10cosB=,得BC=6由勾股定理得
13、BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理13、1【解析】由于四边形ABCD是平行四边形,所以得到BCAD、BC=AD,而CE=2EB,由此即可得到AFDCFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解【详解】解:四边形ABCD是平行四边形,BCAD、BC=AD,而CE=2EB,AFDCFE,且它们的相似比为3:2,SAFD:SEFC=()2,而SAFD=9,SEFC=1故答案为1【点睛】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解14、(4,2)【解析】利用图象旋转和平移可以得
14、到结果.【详解】解:CDO绕点C逆时针旋转90,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到OAD,点D向下平移4个单位故点D坐标为(4,2),故答案为(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.15、【解析】根据概率是所求情况数与总情况数之比,可得答案【详解】因为共有六个小组,所以第五组被抽到的概率是,故答案为:【点睛
15、】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比16、x=1【解析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解试题解析:去分母得:x=2x1+2,解得:x=1,经检验x=1是分式方程的解考点:解分式方程17、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 三、解答题(共7小题,满分69分)18、(1)2x2;(2)x=【解析】(1)先
16、求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可【详解】(1),解不等式得:x2,解不等式得:x2,不等式组的解集为2x2;(2)方程两边都乘以(2x1)(x2)得2x(x2)+x(2x1)=2(x2)(2x1),解得:x=,检验:把x=代入(2x1)(x2)0,所以x=是原方程的解,即原方程的解是x=【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键19、300米【解析】解:设原来每天加固x米,根据题意,得 去分母,得 1
17、200+4200=18x(或18x=5400)解得检验:当时,(或分母不等于0)是原方程的解 答:该地驻军原来每天加固300米20、证明见解析.【解析】试题分析:先由平行四边形的性质得到B=D,AB=CD,再利用垂直的定义得到AEB=GFD=90,根据“ASA”判定AEBGFD,从而得到AB=DC,所以有DG=DC试题解析:四边形ABCD为平行四边形,B=D,AB=CD,AEBC,FGCD,AEB=GFD=90,在AEB和GFD中,B=D,BE=DF,AEB=GFD,AEBGFD,AB=DC,DG=DC考点:1全等三角形的判定与性质;2平行四边形的性质21、景点A与B之间的距离大约为280米【
18、解析】由已知作PCAB于C,可得ABP中A=37,B=45且PA=200m,要求AB的长,可以先求出AC和BC的长【详解】解:如图,作PCAB于C,则ACP=BCP=90,由题意,可得A=37,B=45,PA=200m在RtACP中,ACP=90,A=37,AC=APcosA=2000.80=160,PC=APsinA=2000.60=1在RtBPC中,BCP=90,B=45,BC=PC=1AB=AC+BC=160+1=280(米)答:景点A与B之间的距离大约为280米【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解
19、决的方法就是作高线22、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】()由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是101.8=18(km),当甲离开A的距离20km时,甲的行驶时间是2010=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是400.5=20(km)
20、,故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.23、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+|2-|+()-1-(3-)0-(-1)2018=3+2-+3-
21、1-1,=+2+3-1-1,=3;(2)(x),=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法24、 (1)、证明过程见解析;(2)、2;、1【解析】(1)、首先证明BEF和DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、根据矩形得出CEB=90,结合ABC=120得出CBE=60,根据直角三角形的性质得出答案;、根据菱形的性质以及ABC=120得出CBE是等边三角形,从而得出答案【详解】(1)、证明:ABCD,CDF=FEB,DCF=EBF,点F是BC的中点,BF=CF,在DCF和EBF中,CDF=FEB,DCF=EBF,FC=BF,EBFDCF(AAS), DC=BE, 四边形BECD是平行四边形;(2)、BE=2;当四边形BECD是矩形时,CEB=90,ABC=120,CBE=60;ECB=30,BE=BC=2,BE=1,四边形BECD是菱形时,BE=EC,ABC=120,CBE=60,CBE是等边三角形,BE=BC=1【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键
限制150内