《内蒙古呼伦贝尔市莫旗重点达标名校2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古呼伦贝尔市莫旗重点达标名校2023年中考适应性考试数学试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念2已知抛物线y=ax2(2a+1)x+a1与x轴交于A(x1,0),B(x2,0)两点,若x11,x22,则a的取值范围是()Aa3B0a3Ca3D3a03如图是二次函数yax2bxc(a0)图象的一部分,对称轴为直线x,且经过点(2,0),下列说法:abc0;ab0;4a2bc0;若(2,y1),(,y2)是抛物线上的两点,则y1y2.其中说法正确的有( )ABCD4气
3、象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A本市明天将有的地区下雨B本市明天将有的时间下雨C本市明天下雨的可能性比较大D本市明天肯定下雨5把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)26实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD7计算的结果是( )ABC1D28二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定9下列是我国四座城市的地铁标志图,其中是中心对
4、称图形的是( )ABCD10下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹二、填空题(共7小题,每小题3分,满分21分)11尺规作图:过直线外一点作已知直线的平行线已知:如图,直线l与直线l外一点P求作:过点P与直线l平行的直线作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求请回答:PM平行于l的依据是_12已知图中的两个三角形全等,则
5、1等于_13如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕O圆周旋转时,点F的运动轨迹是_图形14已知正方形ABCD,AB1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_15某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑
6、选项即可)16如图,数轴上不同三点对应的数分别为,其中,则点表示的数是_17如图,在RtABC中,ACB90,BC2,AC6,在AC上取一点D,使AD4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_,在旋转过程中,CF的最大长度是_.三、解答题(共7小题,满分69分)18(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC
7、2.7米,CD11.5米,CDE120,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度(结果保留根号)19(5分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且)(1)当时,在图1中依题意画出图形,并求(用含的式子表示);探究线段,之间的数量关系,并加以证明;(2)当时,直接写出线段,之间的数量关系20(8分)综合与实践折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在
8、点C处,点D落在点D处,射线EC与射线DA相交于点M猜想与证明:(1)如图1,当EC与线段AD交于点M时,判断MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段CD分别与AD,AB交于P,N两点时,CE与AB交于点Q,连接MN 并延长MN交EF于点O 求证:MOEF 且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D所经过的路径的长为 21(10分)为了保障市民安全用水,我市启动自来水管改造
9、工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成这项工程的规定时间是多少天?22(10分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC26,tanB,求EF的长23(12分)计算:|1|+(1)0()124(14分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,
10、求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合2、B【解析】由已知抛物线求出对称
11、轴,解:抛物线:,对称轴,由判别式得出a的取值范围,由得故选B3、D【解析】根据图象得出a0,即可判断;把x=2代入抛物线的解析式即可判断,根据(2,y1),(,y2)到对称轴的距离即可判断.【详解】二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=,a=-b,b0,abc0,故正确;a=-b, a+b=0,故正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故错误; ,故正确;故选D.【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.4、C【解析】试题解析:根据概率表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性
12、为85%,并不是有85%的地区降水,错误; B、本市明天将有85%的时间降水,错误; C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确; D、明天肯定下雨,错误 故选C考点:概率的意义5、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键6、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1 A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,
13、故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键7、A【解析】根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】.故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.8、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键9、D【解析】根据中心对称
14、图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.10、B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,故本选项错误.故选B.【点睛】本题考查了点、线、面、体,
15、准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.二、填空题(共7小题,每小题3分,满分21分)11、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【解析】利用画法得到PMAB,BMPA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PMAB【详解】解:由作法得PMAB,BMPA,四边形ABMP为平行四边形,PMAB故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线
16、;作已知角的角平分线;过一点作已知直线的垂线)也考查了平行四边形的判定与性质12、58【解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.13、圆【解析】根据题意作图,即可得到点F的运动轨迹.【详解】如图,根据题意作下图,可知F的运动轨迹为圆O.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.14、1r【解析】首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0R1,则-1-R0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围【详解】正方形ABCD中,AB=1,AC=,设圆A的半径为
17、R,点B在圆A外,0R1,-1-R0,-1-R以A、C为圆心的两圆外切,两圆的半径的和为,R+r=,r=-R,-1r故答案为:-1r【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质掌握位置关系与数量之间的关系是解题的关键15、A A的平均成绩高于B平均成绩 【解析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.16、1【解析】根据两点间的
18、距离公式可求B点坐标,再根据绝对值的性质即可求解【详解】数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,b=3+(-4)=-1,|b|=|c|,c=1故答案为1【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标17、, +2 【解析】当点P旋转至CA的延长线上时,CP20,BC2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结
19、论【详解】当点P旋转至CA的延长线上时,如图2在直角BCP中,BCP90,CPAC+AP6+420,BC2,BP,BP的中点是F,CFBP 取AB的中点M,连接MF和CM,如图2在直角ABC中,ACB90,AC6,BC2,AB2M为AB中点,CMAB,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,APAD4,M为AB中点,F为BP中点,FMAP2当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CFCM+FM+2故答案为, +2【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了直角三角形斜边上的中线等于斜
20、边的一半以及勾股定理根据题意正确画出对应图形是解题的关键三、解答题(共7小题,满分69分)18、DE的长度为6+1【解析】根据相似三角形的判定与性质解答即可【详解】解:过E作EFBC,CDE120,EDF60,设EF为x,DFx,BEFC90,ACBECD,ABCEFC,即,解得:x9+2,DE=6+1,答:DE的长度为6+1【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题19、(1);(2)【解析】(1)先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;先判断出,得出,再判断出是底角为30度
21、的等腰三角形,再构造出直角三角形即可得出结论;(2)同的方法即可得出结论【详解】(1)当时,画出的图形如图1所示,为等边三角形,为等边三角形的中线 是的垂直平分线,为线段上的点,线段为线段绕点顺时针旋转所得,;如图2,延长到点,使得,连接,作于点,点在上,点在的延长线上,又,于点,在等边三角形中,为中线,点在上,即为底角为的等腰三角形(2)如图3,当时,在上取一点使,为等边三角形,为等边三角形的中线,为线段上的点,是的垂直平分线,线段为线段绕点顺时针旋转所得,又,于点,在等边三角形中,为中线,点在上,【点睛】此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定
22、和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键20、(1)MEF是等腰三角形(2)见解析(3)证明见解析(4) 【解析】(1)由ADBC,可得MFECEF,由折叠可得,MEFCEF,依据MFEMEF,即可得到MEMF,进而得出MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D的位置;(3)依据BEQDFP,可得PFQE,依据NCPNAP,可得ANCN,依据RtMCNRtMAN,可得AMNCMN,进而得到MEF是等腰三角形,依据三线合一,即可得到MOEF 且MO平分EF;(4)依据点D所经过的路径是以O为圆心,4为
23、半径,圆心角为240的扇形的弧,即可得到点D所经过的路径的长【详解】(1)MEF是等腰三角形理由:四边形ABCD是矩形,ADBC,MFE=CEF,由折叠可得,MEF=CEF,MFE=MEF,ME=MF,MEF是等腰三角形(2)折痕EF和折叠后的图形如图所示:(3)如图,FD=BE,由折叠可得,DF=DF,BE=DF,在NCQ和NAP中,CNQ=ANP,NCQ=NAP=90,CQN=APN,CQN=BQE,APN=DPF,BQE=DPF,在BEQ和DFP中,BEQDFP(AAS),PF=QE,四边形ABCD是矩形,AD=BC,ADFD=BCBE,AF=CE,由折叠可得,CE=EC,AF=CE,A
24、P=CQ,在NCQ和NAP中,NCPNAP(AAS),AN=CN,在RtMCN和RtMAN中,RtMCNRtMAN(HL),AMN=CMN,由折叠可得,CEF=CEF,四边形ABCD是矩形,ADBC,AFE=FEC,CEF=AFE,ME=MF,MEF是等腰三角形,MOEF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,如图:故其长为L=故答案为【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是
25、解本题的关键21、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得 .解得x83.检验:当x83时,3x0.所以x83是原分式方程的解答:这项工程的规定时间是83天【点睛】正确理解题意是解题的关键,注意检验.22、 (1)证明见解析;(2)EF1【解析】(1)如图1,利用折叠性质得EAEC,12,再证明13得到AEAF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EHAB于H,如图,利用四边形AECF为菱形得到AEAFCE13,则判断四边形ABEF为平行四边形得到EFAB,根据等腰三角形的性质得AHBH,再在
26、RtBEH中利用tanB可计算出BH5,从而得到EFAB2BH1【详解】(1)证明:如图1,平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12,四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE,而AFCE,四边形AECF为平行四边形,EAEC,四边形AECF为菱形;(2)解:作EHAB于H,如图,E为BC中点,BC26,BEEC13,四边形AECF为菱形,AEAFCE13,AFBE,四边形ABEF为平行四边形,EFAB,EAEB,EHAB,AHBH,在RtBEH中,tanB,设EH12x,BH5x,则BE13x,13x13,解得x1,BH5,
27、AB2BH1,EF1【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等也考查了平行四边形的性质、菱形的判定与性质23、1【解析】试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可试题解析:解:|1|(1)0()113121 点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键24、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论
限制150内