全国大联考2022-2023学年高三二诊模拟考试数学试卷含解析.doc
《全国大联考2022-2023学年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《全国大联考2022-2023学年高三二诊模拟考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD2已知,则,的大小关系为( )ABCD3明代数学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血
2、写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD4易经包含着很多哲理,在信息学、天文学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD5已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )ABCD6已知定义在上的函数满足,且当时,则方程的最小
3、实根的值为( )ABCD7设是虚数单位,则( )ABC1D28函数的图象如图所示,为了得到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位9一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD10已知纯虚数满足,其中为虚数单位,则实数等于( )AB1CD211为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A12种B
4、24种C36种D48种12过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,则_,(的值为_14如图,在长方体中,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是_.15记为数列的前项和.若,则_.16如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析
5、式;(2)当为何值时,面积为最小,政府投资最低?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面积18(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.19(12分)如图,已知正方形所在平面与梯形所在
6、平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离20(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.21(
7、12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结
8、果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050.0250.0100.0050.001 2.7063.8415.0246.6357.87910.82822(10分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是()求椭圆的标准方程;()过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何
9、体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.2、D【解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.3、C【解析】根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【
10、点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.4、B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.5、B【解析】命题p:,为,又为真命题的充分不必要条件为,故6、C【解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,所以,故当时,
11、所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.7、C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.8、C【解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,.又时函数值最大,所以.又,从而,只需
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 联考 2022 2023 学年 高三二诊 模拟考试 数学试卷 解析
限制150内