内蒙古自治区五原县第一中学2022-2023学年高考数学四模试卷含解析.doc
《内蒙古自治区五原县第一中学2022-2023学年高考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《内蒙古自治区五原县第一中学2022-2023学年高考数学四模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD2设,满足约束条件,若的最大值为,则的展开式中项的系数为( )A60B80C90D1203在等差数列中,若,则( )A8B12C14D104盒中有6个小球,其中4个
2、白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,5已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )AB2C4D6已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )ABCD7若集合,则( )ABCD8已知向量,且与的夹角为,则x=( )A-2B2C1D-19a为正实数,i为虚数单位,则a=( )A2BCD110某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A1B2C3D011下列函数中,图象关于轴对称的为( )AB,CD12某几何体的三视图如图所
3、示,则该几何体的体积为( )AB3CD4二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若在定义域内恒有,则实数的取值范围是_14已知,则_.15经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_16从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角,的对边分别为, 且的面积为.(1)求;(2)求的周长 .18(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点
4、G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.19(12分)若正数满足,求的最小值.20(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系(1)求直线和曲线的极坐标方程;(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值21(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列(1)若数列是常数列,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),求证:对任意的恒成立22(10分)已知函数,.(
5、1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题2、B【解析】画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行
6、域和目标函数,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.3、C【解析】将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,得解得,所以故选C【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.4、C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,
7、其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.5、C【解析】设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.6、B【解析】由抛物线的定义转化
8、,列出方程求出p,即可得到抛物线方程【详解】由抛物线y22px(p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题7、B【解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.8、B【解析】由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 内蒙古自治区 五原县 第一 中学 2022 2023 学年 高考 数学四 试卷 解析
限制150内