高中数学排列与组合ppt课件(经典).ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学排列与组合ppt课件(经典).ppt》由会员分享,可在线阅读,更多相关《高中数学排列与组合ppt课件(经典).ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、组组 合(合(1)组合的组合的概概念及组合数公式念及组合数公式问题一:问题一:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参名去参加某天的一项活动,其中加某天的一项活动,其中1 1名同学参加上午的名同学参加上午的活动,活动,1 1名同学参加下午的活动,有多少种不名同学参加下午的活动,有多少种不同的选法?同的选法?问题二:问题二:从甲、乙、丙从甲、乙、丙3 3名同学中选出名同学中选出2 2名去参加名去参加某天一项活动,有多少种不同的选法?某天一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙甲、乙;甲、丙;乙、丙 3 3情境创设情境创设从已知的从已知的3个不同个不同元素中每
2、元素中每次取出次取出2个元素个元素 ,并成一并成一组组问题问题2从已知的从已知的3 个不同个不同元素中每元素中每次取出次取出2个元素个元素 ,按照一按照一定的顺序定的顺序排成一列排成一列.问题问题1排列排列组合组合有有顺顺序序无无顺顺序序 一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素)个元素并成一组并成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合组合 排列与组合的排列与组合的概念有什么共概念有什么共同点与不同点同点与不同点?概念讲解概念讲解组合定义组合定义:组合定义组合定义:一般地,从一般地,从n个不同元素中取出个不同元素中取出
3、m(mn)个个元素元素并成一组并成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个元素的一个个组合组合排列定义排列定义:一般地,从一般地,从n n个不同元素中取出个不同元素中取出m(mn)个元个元素,素,按照一定的顺序排成一列按照一定的顺序排成一列,叫做从,叫做从 n 个不同元素中个不同元素中取出取出 m 个元素的一个个元素的一个排列排列.共同点共同点:都要都要“从从n个不同元素中任取个不同元素中任取m个元素个元素”不同点不同点:排列排列与元素的顺序有关,与元素的顺序有关,而组合而组合则与元素的顺序无关则与元素的顺序无关.概念讲解概念讲解思考一思考一:ab b与与b ba是
4、相同的排列还是相同的组合是相同的排列还是相同的组合?为什么为什么?思考二思考二:两个相同的排列有什么特点两个相同的排列有什么特点?两个相同的组合呢两个相同的组合呢?)元素相同;)元素相同;)元素排列顺序相同)元素排列顺序相同.元素相同元素相同概念理解概念理解 构造排列分成两步完成,先取后排;而构造构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤组合就是其中一个步骤.思考三思考三:组合与排列有联系吗组合与排列有联系吗?判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题?(1)(1)设集合设集合A=a,b,c,d,e,则集合,则集合A的含有的含有3 3个元素的子集有个元
5、素的子集有多少个多少个?(2)(2)某铁路线上有某铁路线上有5 5个车站,则这条铁路线上共需准备多少种个车站,则这条铁路线上共需准备多少种车票车票?有多少种不同的火车票价?有多少种不同的火车票价?组合问题组合问题排列问题排列问题(3)10(3)10名同学分成人数相同的数学和英语两个学习小组名同学分成人数相同的数学和英语两个学习小组,共有共有多少种分法多少种分法?组合问题组合问题(4)10(4)10人聚会,见面后每两人之间要握手相互问候人聚会,见面后每两人之间要握手相互问候,共需握手共需握手多少次多少次?组合问题组合问题(5)(5)从从4 4个风景点中选出个风景点中选出2 2个游览个游览,有多少
6、种不同的方法有多少种不同的方法?组合问题组合问题(6)(6)从从4 4个风景点中选出个风景点中选出2 2个个,并确定这并确定这2 2个风景点的游览顺序个风景点的游览顺序,有多少种不同的方法有多少种不同的方法?排列问题排列问题组合问题组合问题组合是选择的结果,排列组合是选择的结果,排列是选择后再排序的结果是选择后再排序的结果.1.1.从从 a,b,c三个不同的元素中取出两个元素的所有组三个不同的元素中取出两个元素的所有组合分别是合分别是:ab,ac,bc 2.2.已知已知4 4个元素个元素a,b,c,d ,写出每次取出两个元素的写出每次取出两个元素的所有组合所有组合.ab c d b c d c
7、d ab,ac,ad,bc,bd,cd(3(3个个)(6(6个个)概念理解概念理解 从从n个不同元素中取出个不同元素中取出m(mn)个元素的个元素的所有组合的个数,叫做从所有组合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号 表示表示.如如:从从 a,b,c三个不同的元素中取出两个元素的所三个不同的元素中取出两个元素的所有组合个数是有组合个数是:如如:已知已知4 4个元素个元素a、b、c、d,写出每次取出两个写出每次取出两个元素的所有组合个数是:元素的所有组合个数是:概念讲解概念讲解组合数组合数:注意:注意:注意:注意:是一个数,应该把它与是一个
8、数,应该把它与“组合组合”区别开来区别开来 1.写出从写出从a,b,c,d 四个元素中任取三个元素的所有组合。四个元素中任取三个元素的所有组合。abc,abd,acd,bcd.bcddcbacd练一练练一练练一练练一练组合排列abcabdacdbcdabc bac cabacb bca cbaabd bad dabadb bda dbaacd cad dacadc cda dcabcd cbd dbcbdc cdb dcb不写出所有组合,怎样才能知道组合的种数?不写出所有组合,怎样才能知道组合的种数?你发现了你发现了什么什么?如何计算如何计算:组合数公式组合数公式 排列与组合是有区别的,但它们
9、又有联系排列与组合是有区别的,但它们又有联系根据分步计数原理,得到:根据分步计数原理,得到:因此:因此:一般地,求从一般地,求从 个不同元素中取出个不同元素中取出 个元素的排个元素的排列数,可以分为以下列数,可以分为以下2步:步:第第1步,先求出从这步,先求出从这 个不同元素中取出个不同元素中取出 个元素个元素的组合数的组合数 第第2步,求每一个组合中步,求每一个组合中 个元素的全排列数个元素的全排列数 这里 ,且 ,这个公式叫做组合组合组合组合数公式数公式数公式数公式 概念讲解概念讲解组合数公式组合数公式:从从 n 个不同元中取出个不同元中取出m个元素的排列数个元素的排列数 概念讲解概念讲解
10、例例1 1、计计算:算:例题分析例题分析解:解:(2)(2)(3 3)得:例例2.2.甲、乙、丙、丁甲、乙、丙、丁4 4支足球队举行单循环赛,支足球队举行单循环赛,(1)(1)列出所有各场比赛的双方;列出所有各场比赛的双方;(2)(2)列出所有冠亚军的可能情况列出所有冠亚军的可能情况.(2)(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲乙甲、丙甲丙甲、丁甲丁甲、丙乙丙乙、丁乙丁乙、丁丙丁丙(1)(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:解:例题分析例题分析例例1、一位教练的足球队共有、一位教练的足球队共有17名初级学员,按照
11、足球名初级学员,按照足球比赛规则,比赛时一个足球队的上场队员是比赛规则,比赛时一个足球队的上场队员是11人。问:人。问:(1)这位教练从这)这位教练从这17名学员中可以形成多少种学员上名学员中可以形成多少种学员上场方案?场方案?(2)如果在选出)如果在选出11名上场队员时,还要确定其中的守名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?门员,那么教练员有多少种方式做这件事情?解:(解:(1)(2)或或例例2.(1)2.(1)平面内有平面内有1010个点,以其中每个点,以其中每2 2个点为端点的线个点为端点的线段共有多少条?段共有多少条?(2)(2)平面内有平面内有1010
12、个点,以其中每个点,以其中每2 2个点为端点的有向个点为端点的有向线段共有多少条?线段共有多少条?解:(解:(1)(2)或或例例3.(1)3.(1)凸五边形有多少条对角线?凸五边形有多少条对角线?(2)(2)凸凸n n(n3n3)边形有多少条对角线?)边形有多少条对角线?解:(解:(1)(2)例例4、在、在100件产品中有件产品中有98件合格品,件合格品,2件次品。产品件次品。产品检验时检验时,从从100件产品中任意抽出件产品中任意抽出3件。件。(1)一共有多少种不同的抽法一共有多少种不同的抽法?(2)抽出的抽出的3件中恰好有件中恰好有1件是次品的抽法有多少种件是次品的抽法有多少种?(3)抽出
13、的抽出的3件中至少有件中至少有1件是次品的抽法有多少种件是次品的抽法有多少种?(4)抽出的抽出的3件中至多有一件是次品的抽法有多少种?件中至多有一件是次品的抽法有多少种?解:(解:(1)(2)(3)(4)变式练习变式练习按下列条件,从按下列条件,从12人中选出人中选出5人,有多少种不同选法?人,有多少种不同选法?(1)甲、乙、丙三人必须当选;)甲、乙、丙三人必须当选;(2)甲、乙、丙三人不能当选;)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;)甲必须当选,乙、丙不能当选;(4)甲、乙、丙三人只有一人当选;)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多)甲、乙、丙三人至多2
14、人当选;人当选;(6)甲、乙、丙三人至少)甲、乙、丙三人至少1人当选;人当选;例例5 5、某医院有内科医生、某医院有内科医生8 8名,外科医生名,外科医生6 6名,现要名,现要 派派4 4人参加支边医疗队,至少要有人参加支边医疗队,至少要有1 1名内科医生名内科医生 和和1 1名外科医生参加,有多少种选法?名外科医生参加,有多少种选法?解:方法解:方法1:方法方法2:例例6、平面内有平面内有9个点,其中个点,其中4个点在一条直线上,此个点在一条直线上,此 外没有外没有3个点在一条直线上,过这个点在一条直线上,过这9个点可确定个点可确定 多少条直线?可以作多少个三角形?多少条直线?可以作多少个三
15、角形?解:方法解:方法1:9个点分两类:共线的四点个点分两类:共线的四点A,B,C,D其他的五点其他的五点E,F,G,H,G第一种情况:两类点中各选一点有第一种情况:两类点中各选一点有第二种情况:不共线的五点中选两点有第二种情况:不共线的五点中选两点有第三种情况:四点确定的一条直线共第三种情况:四点确定的一条直线共1条;条;结论:结论:例例6、平面内有平面内有9个点,其中个点,其中4个点在一条直线上,此个点在一条直线上,此 外没有外没有3个点在一条直线上,过这个点在一条直线上,过这9个点可确定个点可确定 多少条直线?可以作多少个三角形?多少条直线?可以作多少个三角形?解:方法解:方法2:先先9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 排列 组合 ppt 课件 经典
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内