伺服机械传动系统(PPT52页)(共54张PPT).pptx
《伺服机械传动系统(PPT52页)(共54张PPT).pptx》由会员分享,可在线阅读,更多相关《伺服机械传动系统(PPT52页)(共54张PPT).pptx(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、伺服机械传动系统 伺服机械传动系统是采用伺服电机驱动的机械传动系统,其中的机械传动装置称为“伺服机械传动装置”。它的作用是传递转矩和转速,并使伺服电机与负载之间得到转矩与转速的合理匹配。式中 MWP作用在负载轴上峰值工作力矩(Ncm);MFP 作用在负载轴上峰值磨擦力矩(Ncm);LP 负载轴的峰值角加速度(rad/s2);JM 电机转动惯量(kgcm2);JL 负载转动惯量(kgcm2);JGM 传动装置各转动零件折算到电机轴上的转动惯量(kgcm2);传动装置的效率;it 总传动比。载荷是设计机电系统的基本依据。确定载荷时,应根据设备本身功能要求和工作环境等情况,逐项分析载荷的类型及大小,
2、然后再进行综合。综合方法有“力矩峰值综合”和“力矩均方综合”。(1)力矩峰值综合及峰值力矩特性“力矩峰值综合”就是将各种载荷的峰值直接代数相加。折算到电机轴上的负载峰值力矩MLPM为(4-1)培训专用负载力矩计算(2)力矩的均方综合及均方根力矩特性力矩的“均方综合”是将各种载荷按均方根值折算。折算到电机轴上的负载均方根力矩为(4-2)式中 MW作用在负载轴上的瞬时工作力矩;MF作用在负载轴上的瞬时磨擦力矩;L负载轴上的瞬时角加速度;T载荷变化周期;it总传动比。式(4-2)称为负载的均方根力矩特性表达式,对应的曲线如图4-1所示。培训专用总传动比的选择(1)“折算负载峰值力矩最小”的最佳总传动
3、比对式(4-1)取,得到“折算负载峰值力矩最小”的最佳总传动比(4-3)(2)“折算负载均方根力矩最小”的最佳总传动比对式(4-2)取,得到“折算负载均方根力矩最小”的最佳总传动比(4-4)最佳总传动比实现了功率的最佳传递。(3)“加速度最大”的最佳传动比假定电动机输出转矩和负载力矩平衡,可导出取可求得“加速度最大”的最佳传动比(4-6)培训专用总传动比的l确定 上述几种最佳总传动比均是针对某一方面要求而言,故其结果是不一样的,在具体选择时,除考虑伺服电机与负载的最佳匹配外,还要考虑总传动比对系统的稳定性、精确性、快速性的影响。额定转矩培训专用“折算转动惯量最小”原则(1)确定传动链的级数和各
4、级传动比的原则(1)“折算转动惯量最小”原则,使系统具有良好的动态性能。(2)“最小重量”原则(3)有利于“提高传动精度”原则(1)“折算转动惯量最小”原则 折算到电机轴上的总惯量为式中 JA、JB、JC、JD分别为各齿轮的转动惯量;it、I1、i2分别为总传动比和两级减速的传动比。令,可得具有最不惯量的条件因为 i1,故可得各级传动比(4-7)培训专用“折算转动惯量最小”原则(2)计算出各级齿轮传动比后,还应进行机械传动装置的惯量验算。对于开环系统,机械传动装置折算到电机轴上的负载转动惯量JL应小于加速要求的允许值。对于闭环系统除满足加速要求外,折算负载转量JL还应与伺服电机转子转动惯量JM
5、合理匹配。按上述方法类推,可得多级传动折算转动惯量最小时的各级传动比计算公式(4-8)式中 n传动系统的传动级数;k所需计算的任一级数。由已知传动比,利用图4-5确定所需齿轮啮合对数,图中纵坐标为JGM/J1,是传动装置在输入轴上总折算惯量与输入轴上小齿轮惯量J1的比值,称为惯量指标,横坐标表示总降速传动比it。培训专用“最小重量”原则即若使两级传动比相等,可得最小重量的齿轮传动系统,同时,按此原则还可使传动系统中齿轮尺寸减至两种,并且使各级齿轮的中心距彼此相等,有利于加工。上述二级减速小功率传动装置,则各齿轮重量之和W为式中 b齿轮宽度;齿轮材料密度;g重力加速度;dA,dB,dC,dD分别
6、为各齿轮直径。令,则有得培训专用有利于“提高传动精度”原则在精密齿轮传动系统中,传动比相当于误差传递系数,因此,总传动比合理分级与分配对系统的传动精度将产生十分重要影响。折算到电动机轴上的总转角误差为(4-9)式中折算到电动机轴上的总转角误差;第k级齿轮副在从动轴上的转角误差;从电动机轴到第k级齿轮副从动齿轮的传动比。各级传动比逐级递减时的总转角误差要比递增时大(该例中,后者增加了约34%)。在总转角误差中,低速级的误差占的比重较大,如本例的第一种情况中,末级占总误差的86%,因此末级采用精度等级较高的齿轮副,可显著地减小总折算转角误差。培训专用步进电机(1)步距角()的选择 确定步进电机步距
7、角应根据数控系统的脉冲当量而定。脉冲当量是指单位脉冲所产生的直线位移量或角位移量,通常由系统要求的精度来定。对于步进电动机驱动工作台直线运动时,其步距角(4-10)式中 直线脉冲当量(mm);t 丝杠导程(mm);i 步进电动机至丝杠间传动比。n步进电机是一种把电脉冲信号变换成直线位移或角位移的执行元件。每输入一个脉冲,步进电机前进一步,所以也称为脉冲电动机。n步进电机的线位移或角位移量与脉冲数成正比。它的转速或线速度与脉冲频率成正比。n在负载能力允许范围内,不因电源电压、负载、环境条件的波动而变化。步进电机可以调速、能够快速起动、制动和反转。n应用于:数控机床、绘图仪、卫星天线、自动记录仪等
8、n选择步进电机的主要考虑因素:培训专用步进电机(2)转矩和选择 根据设备的总负载力矩选择电机转矩时,还应考虑到满足起动转矩、运行转矩、定位转矩的要求。起动转矩可按表4-1和图4-7中的矩角特性曲线求得,也可由图4-8中的起动矩频特性曲线1求得;运行转矩可由图4-8中的运行矩频特性曲线2求得。定位转矩则是依据断电情况下,设备是否要求定位而定。表4-1 起动转矩与最大静转矩的关系 步距精度选择 步距精度用步距误差表示,它是指空载情况下,转子离开准确位置的最大偏移量。它影响系统的定位误差s,即(4-11)式中电机步距误差;传动件累计误差;摩擦负载引起得位置误差;培训专用交、直流伺服电机(1)选择直流
9、伺服电机时,主要是根据其静态特性、动态特性、热特性要求而定。电机运行曲线 要想使直流伺服电机充分发挥其性能、应让电机运行符合转矩-转速特性曲线。直流伺服电机的转矩-转速特性曲线如图4-9所示。它由五条极限曲线划分出电机的三个工作区。连续工作区I是指额定转矩以下的工作区,该区内转矩变化很小,从发热角度看可以长期工作;间断工作区II(含I区)表明电机可间断过载工作;瞬时工作区III(含I、II区)是在瞬时换向极限(允许是刷跳火限)以下,可短时间以更大的加减速或正反转操作。培训专用交、直流伺服电机(2)转速的选择 选择电机转速时,要保证电机电高转速nm满足设备最高运行速度要求。转动惯量的选择 电机转
10、子转动惯量应与负载惯量相匹配,否则将直接影响电机和整个伺服系统的动态性能。对于数字调节系统,通常按机械传动部件转动惯量与电机转子之比来确定,永磁式伺服电机为0.030.3,电磁式伺服电机0.11。热时间常数 热时间常数的大小表明可超载运行时间的能力。大惯量伺服电机优于小惯量伺服电机。转矩的选择 电机的额定转矩Tn,主要依据折算到电机轴上负载力矩TL选定,即如果电机工作在间断工作区,电机的额定转矩可以小于负载力矩。培训专用交流伺服电机连线图培训专用交流伺服电机通讯连线图培训专用伺服机械系统的机械参数谐振频率(1)谐振频率 (2)刚度 (3)质量和惯量(4)磨擦(5)失动(1)谐振频率 机械传动部
11、件一般都是多自由度系统,有一个最低的基本固有频率和若干高阶固有频率,分别称为第一揩振频率omech1和n阶谐振频率omechn。当外界激振频率接近或等于系统固有频率时,系统要发生谐振而无法工作,所以,系统的工作频率范围内,不应包含部件的固有频率,以防产生谐振。各部件的固有频率应错开一定距离,以免产生耦合。式中,K为纵向刚度;Km为扭转刚度;m为质量;J为转动惯量。如不计机械传动系统阻尼影响,则机械系统可看作质量(或惯量)-弹簧系统,其固有频率培训专用伺服机械系统的机械参数刚度(2)刚度 伺服传动系统刚度反映出系统抵抗变形的能力。刚度不足时,将造成位置误差(失动)及系统动态性能变坏,即影响系统运
12、动的准确性、快速性、稳定性;刚度过高,也将带来转动惯量增大,成本增加等不足 伺服传动系统刚度包括伺服刚度和传动机械刚度两部分。传动机构刚度又分成扭转刚度和纵向刚度 伺服刚度是指伺服电机输出轴上施加的负载转矩与其引起的输出轴角位移之比,其表达式为(4-12)式中 MT单位脉冲在伺服电机轴上的输出转矩(Ncm/脉冲);单位脉冲下伺服电机轴产生的转角()机械传动机构刚度大小取决于各传动件和结构件的刚度及构件联接方式。以于各构件串联的弹簧质量系统,其总刚度K可用下式计算(4-13)式中,Ki为任一构件的刚度。在进行刚度计算时,需要将工作台或任一传动轴的刚度折算到某传动轴上时,可以利用能量相等原则进行计
13、算。培训专用伺服机械系统的机械参数质量(惯量)和摩擦在不影响刚度条件下,应尽量减小各构件质量和惯量,这样既可降低制造成本,又可提高伺服性能。(3)质量和惯量(4)摩擦 粘滞摩擦影响阻尼数值,对系统的振荡有阻尼作用,可提高系统的稳定性,但也使输出响应变慢,即影响了系统的动态性能。库仑摩擦趋向于减小输出位移的超调和振荡。静摩擦是造成输出响应死区的根本原因,而且它的粘性磨擦一起交替作用,造成爬行现象。静磨擦力客观上助长了失动现象,这是因为静磨擦力的存在,必然要增大驱动力,相应增加了弹性变形之故。培训专用伺服机械系统的机械参数失动 失动是指运动体没能够达到目标位置的现象,其失动范围大小用失动量表示,通
14、常折合成直线运动来表示失动量。机械传动系统的失动量是各传动件间的间隙及本身的弹性变形等综合造成运动的死区。故伺服机械系统的总失动量(5)失动失动量的大小在开环系统中,直接影响控制精度,在闭环系统中影响系统的稳定性。(4-14)式中传动件间隙引起的失动量;伺服刚度引起的失动量;机械系统刚度引起的失动量。培训专用失动量和固有频率的计算实例培训专用 例4.2(1)固有频率计算直流电机:转速nm=900r/min;功率P=1.5kW;转动惯量Jm=210-2kgm2。齿轮箱:高速链传动比iH=3,低速链传动比1.5;折算到电机轴的齿轮系转动惯量:高速链JGMH=0.510-2kgm2,低速链JGML=
15、0.110-2kgm2。(由于传动链的不同)滚珠丝杠:内径d1=0.056m;螺距t=0.012m;内循环双螺母差调隙;两端止推结构;两端轴承间距离L=2.16m;最高转速:高速级nsH=300r/min,低速级nSL=60r/min。工作台:质量m=3000kg;磨擦阻力Ff=1500N;最大移动速度:高速级vH=610-2m/s,低速级vL=1.210-2m/s。1驱动系统轴向固有角频率的计算滚珠丝杠的轴向刚度轴承刚度Kb、滚珠螺母刚度Kn及轴承支架刚度KsKb=7.2108N/m,KN=14.4108N/m。滚珠丝杠轴向综合刚度Keg等式(413)因此,驱动系统轴向固有角频率培训专用例4
16、.2(1)失动量的计算(1)(1)机械刚度引起的失动量eg考虑到工作台正反向移动时,有相同的弹性变形量,所以丝杠轴向弹性变形所引起的失动量为由于左作台起动时磨擦力Ff=1500N,所以当工作台开始移动时,丝杠轴向弹性变形量为(2)伺服刚度引起的失动量SC根据伺服系统要求,如取电机轴在单位脉冲下转角=3,电机轴上输出转矩TP=8Nm,则电机轴的伺服刚度为若取传动效率=0.93时,则换算到滚珠丝杠的伺服刚度为培训专用例4.2(1)失动量的计算(2)所以,伺服刚度引起的失动量为(3)齿轮副周向侧隙引起的失动量G设齿轮副的模数m=110-3m,齿数z1=50,z2=150,周向侧隙jt=0.9310-
17、4m,则换算成工作台移动方向的失动量为(4)总失动量to培训专用感应同步器结构(1)1感应同步器 2.光栅式检测装置 3码盘式检测装置4旋转变压器 5磁栅式位移检测装置 感应同步器是利用两个平面印刷电路绕组的电磁耦合原理,检测运动件的直线位移或角位移的传感器。1)感应同步器直线式感应同步器旋转式感应同步器1)感应同步器的结构 感应同步器由两部分组成:定尺和滑尺(直线式)或定子和转子(旋转式)。直线式感应同步器的截面结构,如图4-12所示。1)位置检测器机械类基准元件 如丝杆螺母副、多齿分度盘光学类基准元件,如光栅、激光器等电磁感应类基准元件、磁栅、感应同步器培训专用感应同步器结构(2)定尺和滑
18、尺的基体通常用铸铁或钢板制成,基体上粘有经照像腐蚀工艺制成的方齿形平面绕组(图4-13),然后在绕组表面喷涂一层绝缘保护层。为了防止静电感应,滑尺的表面还贴有屏蔽层。图4-13所示,定尺的平面绕组是节距为2mm单相均匀连续绕组,滑尺是具有两个绕组的短尺,其节距也是2mm,但是A、B两绕组的位置相对于定尺绕组错开1/4节距。一般称A绕组为正弦组,B绕组为余弦绕组。使用定尺安装在固定的部件上,滑尺安装在定尺平行,并保持有一定间隙(约 0.250.05mm)的移动部件上。培训专用感应同步器工作原理 感应同步器的定尺和滑尺按要求安装好后,如果对滑尺上A、B两绕组通入交流信号电源(设正弦绕组激磁电压为U
19、S;余弦绕组激磁电压为UC)激磁。由于电磁感应(互感),它们就会分别在定尺绕组上产生与激磁电势同频率的交变感应电压es、ec。当滑尺相对于定尺移动时,则定尺绕组上感应电势将随滑尺位置变化而发生周期性变化。若以正弦绕组为例,设该绕组的激磁电压为US,则当滑尺相对于定尺在空间移动一个节距,定尺绕组上将感应电动势es,且按余弦函数规律变化(图4-15),如写成数学式:(4-15)式中 es定尺绕组感应电势;US滑尺正弦绕组激磁电压;k定尺与滑尺上绕组的电磁耦合系数;滑尺相以定尺平等位移的相位角同理,若只对余弦绕组激磁时,定尺绕组中感应电势ec按下述数学式变化(4-16)当同时给滑尺上二绕组激磁(US
20、、UC)时,则根据叠加原理,定尺绕组中产生的感应电势应是分别感应电势的代数和(e=es+ec)。据此就可以求出滑尺的位移。x位移量;W绕组节距;培训专用感应同步器工作方式(1)按对激磁绕组供电电压的形式 鉴相型工作方式 鉴幅型工作方式 1)鉴相型工作方式 这是根据感应电势相位检测位移量的工作方式。在滑尺的两绕组上分别通入频率、振幅相同,而相位差/2的激磁电压(4-17)定尺绕组上合成感应电势为(4-18)由式(4-18)可知,定尺感应电势相位与滑尺位移量x有严格对应关系,据此式就可求得滑尺位移x值。培训专用感应同步器工作方式(2)这是根据感应电势振幅变化来检测位移量的工作方式。在滑尺的两个绕组
21、上,分别通入相应和频率一致、而幅值分别按正弦和余弦变化的正弦交变电压:式中,为合磁场的相位角。同理,可推出定尺上绕组合成感应电势为(4-19)特点及应用场合:感应同步器具有较高的检测精度和分辨能力、抗干扰能力强、使用寿命长、工艺性好、制造成本低,对使用环境无特殊要求。故广泛用于生产中检测设备、数控机床、机器人等方面。2)鉴幅型工作方式 培训专用计量光栅分类培训专用光栅检测原理透射式光栅位称检测装置原理如图4-18所示,它由光栅尺、光学元件及数显装置组成。当标尺光栅和指示光栅的线纹方向不平行,相互倾斜一个很小交角时,光线就会透过两个光栅尺,形成明暗相间的粗条莫尔条纹,其方向与光栅刻线相垂直,如图
22、4-19所示。若两个光栅尺相对位移一个栅距W,莫尔条纹也移动一个条纹间距B,则光电元件输出信号也就变化一个周期,最后由数字显示仪显示出光栅尺(运动件)的准确位移。若两个光栅尺栅距均为W,莫尔条纹间距B与W的关系为:式中,为两个栅尺刻线的交角。培训专用圆光栅检测原理 圆光栅的莫尔条纹根据光栅线纹方向(径向或切向)不同而异。径向圆光栅为圆弧形莫尔条纹,切向圆光栅为环形莫尔条纹,如图4-20所示。根据莫尔条纹与光栅线纹移动的对应关系可知,当标尺光栅(主光栅)移动一个栅距,光电元件检测到的莫尔条纹变化一个周期2,其输出是近似正弦波形的电压信号。为了辨别主光栅运动方向,把两个光电元件1和2分别放在间隔为
23、1/4个莫尔条纹间距的地方,如图4-21所示。根据两个光电元件接收到莫尔条纹信号不同(正弦波电信号相应位差1/4周期),即利用两个输出信号的相位超前或滞后就可辨明主光栅运动方向。培训专用光栅读数头的结构形式 利用光栅检测的关键部分是光栅读数头,它由光源、会聚透镜、指示光栅、光电元件、必要的光栏及调整机构等组成。光栅读数头结构型式很多,根据读数头结构特点和使用场合分为直接接收式读数头(或称硅光电池读数头)、镜象式读数头、分光镜式读数头、金属光栅反射式读数头。图4-22所示是直接接收式读数头结构,这类读数头应用最广。图4-23所示是镜象式读数头原理,它是利用装在内部的透镜-反射镜系统,形成标尺光栅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 伺服 机械传动 系统 PPT52 54 PPT
限制150内