人工智能之不确定性处理(共117张PPT).pptx
《人工智能之不确定性处理(共117张PPT).pptx》由会员分享,可在线阅读,更多相关《人工智能之不确定性处理(共117张PPT).pptx(117页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、培训专用第7章 不确定性处理7.1 不确定性及其类型随机性模糊性不完全性不一致性培训专用第7章 不确定性处理7.2 不确定性知识的表示随机性知识的表示随机性产生式规则的表示是在产生式规则的后面加上一个称为信度(或可信度)的0到1之间的数。一般表示形式为 或其中 表示规则 为真的信度,表示A为真的情况下B为真的信度。一般可以以概率作为信度。培训专用第7章 不确定性处理例如果乌云密布并且电闪雷鸣,则天要下暴雨;(0.95)如果头痛发烧,则患了感冒;(0.8)7.2.2 模糊知识的表示模糊不确定性通常用隶属度表示,隶属度表示对象具有某种属性的程度。隶属度可以与谓词逻辑、产生式规则、框架、语义网络等结
2、合起来表示模糊不确定性。培训专用第7章 不确定性处理模糊产生式规则“如果患者有些头疼并且发高烧,则他患了重感冒”可表示为:(患者,症状,(头疼,0.95)(患者,症状,(发烧,1.1)(患者,疾病,(感冒,1.2)模糊谓词普通谓词加上程度表示。例:“Mary 很喜欢书”可表示为like1.2(mary,book),或1.2like(mary,book)。培训专用第7章 不确定性处理模糊框架框架名:大枣 属:(干果,0.8)形:(圆,0.7)色:(红,1.0)味:(甘,1.1)用途:食用 药用:用量:约五枚 用法:水煎服培训专用第7章 不确定性处理模糊语义网狗食肉动物理解人意(灵敏,1.5)(c
3、an,0.3)(AKO,0.7)嗅觉培训专用第7章 不确定性处理7.2.3 模糊集合与模糊逻辑模糊逻辑传统二值逻辑的模糊推广。定义命题的真值为对象具有该属性的隶属度。设一个n元模糊谓词 ,则其真值定义为 具有属性P的隶属度,即:对模糊命题,可定义逻辑运算为培训专用第7章 不确定性处理逻辑或逻辑非培训专用第7章 不确定性处理7.2.4 多值逻辑Kleene三值逻辑 T F UTFU T F U F F F U F U T F UTFU T T T T F U T U UP PTFU F T U 培训专用第7章 不确定性处理7.2.5 非单调逻辑推理中的结论并不总是单调增加的。7.2.6 时序逻辑
4、将时间概念(如“过去”,“将来”,“有时”等)引入逻辑,使命题的真值随时间变化。培训专用第7章 不确定性处理7.3 不确定性推理的一般模式基于不确定性知识的推理称为不确定性推理。在一般推理的基础上,还要进行不确定性度量(如信度、隶属度等)的计算。不确定性推理不确定性推理=符号模式匹配符号模式匹配+不确定性计算不确定性计算符号模式能否匹配成功,要求符号模式本身要匹配,而且不确定性要超过“阈值”。推理过程中规则的触发要求前提匹配成功,并且前提条件的不确定性超过阈值。推理结论是否成功取决与不确定性是否超过阈值。主观Bayes方法,确定性理论(可信度方法)、证据理论等。培训专用 主观Bayes方法在专
5、家系统PROSPECTOR中成功应用。知识的不确定性表示为培训专用第7章 不确定性处理7.4 确定性理论(可信度方法)适用于随机不确定性的推理,在专家系统MYCIN中成功应用。C-F模型1。知识不确定性的表示If E Then H (CF(H,E)CF(H,E)称为该条知识的可信度(Certainty Factor),取值范围为-1,1。若CF(H,E)0,则说明前提条件E所对应的证据的出现增加了H为真的概率。CF(H,E)越大,H为真的可信度越大。若CF(H,E)=1,则表示E的出现使H为真。培训专用第7章 不确定性处理若CF(H,E)0,则说明E所对应的证据的出现减少了H为真的概率,即增加
6、了H为假的概率。CF(H,E)越小,H为假的可信度越大。若CF(H,E)=-1,则表示E的出现使H为假。若CF(H,E)=0,则表示 H与E独立,即E所对应的证据的出现对H没有影响。实际应用中,CF(H,E)的值由领域专家直接给出。培训专用第7章 不确定性的处理2。证据不确定性的表示证据的不确定性也用可信度因子表示。若证据肯定为真,则CF(E)=1;若证据肯定为假,则CF(E)=-1;其它情况则介于-1 与正1之间。对组合证据,若E=E1 and E2 andand En,则 CF(E)=minCF(E1),CF(E2),CF(En)若 E=E1 OR E2 OR OR En,则 CF(E)=
7、maxCF(E1),CF(E2),CF(En)培训专用第7章 不确定性的处理推理中结论的不确定性的计算 CF(H)=CF(H,E)max0,CF(E)若CF(E)0,则CF(H)=0;若CF(E)=1,则CF(H)=CF(H,E)结论不确定性的合成算法。当有多条知识推出相同结论时,总的不确定性可利用公式计算。培训专用第7章 不确定性的处理如果有两条知识:IF E1 THEN H (CF(H,E1)IF E2 THEN H (CF(H,E2)则H的总的信度可分两步(1)、分别计算每一条知识的CF(H):CF1(H)=CF(H,E1)max0,CF(E1)CF2(H)=CF(H,E2)max0,C
8、F(E2)培训专用第7章 不确定性的处理总的可信度可计算为培训专用例 设有如下一组知识:r1:IF E1 THEN H(0.8)r2:IF E2 THEN H (0.6)r3:IF E3 THEN H (0.5)r4:IF E4 AND(E5 OR E6)THEN E1(0.7)r5:IF E7 AND E8 THEN E3 (0.9)培训专用第7章 不确定性的处理已知:CF(E2)=0.8 CF(E4)=0.5,CF(E5)=0.6 CF(E6)=0.7,CF(E7)=0.6,CF(E8)=0.9求CF(H).带有阈值的不确定性推理知识不确定性的表示 If E Then H (CF(H,E)
9、,)其中可信度因子CF(H,E)在(0,1之间;是阈值,0 1.只有当前提条件E的可信度CF(E)时,相应的知识才能被利用。培训专用第7章 不确定性处理证据不确定性的表示也使用可信度表示,但取值范围为0,1。复合证据不确定性的计算法同前。结论不确定性的计算方法当可信度CF(E)时,结论H的可信度 CF(H)=CF(H,E)CF(E)培训专用第7章 不确定性的处理结论不确定性的合成算法当有n条规则有相同的结论时,即 IF E1 THEN H (CF(H,E1),1)IF E2 THEN H (CF(H,E2),2).IF En THEN H (CF(H,En),n)如果都满足CF(Ei)i,则首
10、先求出每条规则的结论的可信度培训专用第7章 不确定性的处理结论H的综合可信度可由下列方法之一求出:(1)求极大值(2)加权求和法(3)有限求和培训专用第7章 不确定性的处理加权的不确定性推理当条件的重要性程度不一样时,可以使用加权的规则表示知识,一般形式为 其中,是加权因子,是阈值,均由领域专家给出。权值一般满足条件 培训专用第7章 不确定性的处理加权的不确定性推理组合证据不确定性的算法如果前提条件 则其可信度为如果培训专用第7章 不确定性的处理 则结论的不确定性当一条知识的 时,结论的可信度为其中“”可以是相乘预算或“取极小运算”。培训专用第7章 不确定性的处理加权的不确定性推理加权因子的引
11、入不仅解决了证据的重要性、独立性的问题,而且还解决了证据不完全的推理问题,并为冲突消解提供了一种解决途径。培训专用例、设有如下知识:r1:IF E1(0.6)and E2(0.4)then E6(0.8,0.75)r2:IF E3(0.5)and E4(0.3)and E5(0.2)then E7(0.7,0.6)r3:IF E6(0.7)and E7(0.3)then H(0.75,0.6)已知:CF(E1)=0.9,CF(E2)=0.8,CF(E3)=0.7,CF(E4)=0.6,CF(E5)=0.5.求:CF(H)=?培训专用第7章 不确定性的处理前提条件中带有可信度因子的不确定性推理知
12、识不确定性的表示 或其中 为子条件 的可信度。培训专用第7章 不确定性的处理不确定性的匹配算法(1)。不带加权因子如果存在证据 ,则当 时,证据与知识匹配。(2)。带加权因子培训专用第7章 不确定性的处理结论的不确定性计算不带加权因子 如果知识的前提条件与证据匹配成功,则带加权因子培训专用第7章 不确定性的处理7.5 证据理论D-S证据理论证据理论用集合表示命题。对象的所有可能取值的集合称为样本空间(识别框架)。样本空间的任何一个子集都表示一个命题。1、基本概率分配函数 设D为样本空间,D的所有子集组成的集合记为 。培训专用7.5 证据理论D-S证据理论定义 函数 若满足:则称m为 上的基本概
13、率分配函数。为 A 的基本概率数。基本概率分配函数不是概率函数。见例。概率分配函数的基本作用是对命题进行可信度分配。培训专用7.5 证据理论D-S证据理论2、信任函数 定义 信任函数定义为 ,且满足信任函数又称为下限函数,表示命题A为真的信任程度。培训专用7.5 证据理论D-S证据理论信任函数的性质1、2、3、递增性。若 ,则 4、。为 A的补集。培训专用7.5 证据理论D-S证据理论似然函数定义 似然函数 定义为似然函数又称为上限函数。表示对A为非假的信任程度。似然函数的性质1、培训专用7.5 证据理论D-S证据理论似然函数的性质2、3、信任区间区间 称为A的信任区间,表示对A信任的上下限。
14、培训专用7.5 证据理论D-S证据理论一些特殊的信任区间:1,1:表示A为真;0,0:表示A为假;0,1:表示对A一无所知;0.5,0.5:表示A是否为真是完全不确定的;0.25,0.85:表示对A为真的信任程度比对A为假的信任程度稍高一些。0.25,1:表示对A为真有0.25的信任度。培训专用7.5 证据理论概率分配函数的正交和(Dempster 组合规则)定义 设m1 和 m2 是两个概率分配函数,则其正交和 为 其中培训专用7.5 证据理论D-S证据理论如果 ,则m也是一个概率分配函数;如果 ,则不存在正交和,称m1与m2矛盾。例。见书。培训专用7.5 证据理论一个基于证据理论的不确定推
15、理模型概率分配函数和类概率函数样本空间 上的概率分配函数满足下面要求:(1)、(2)、(3)、(4)、当 且 或 时,培训专用7.5 证据理论显然,在此概率分配函数中,只有单个元素构成的子集及样本空间本身的函数值才有可能大于0。其它子集的概率分配数均为0。性质培训专用7.5 证据理论对任何集合A和B,都有定义 命题A的类概率函数为 其中|A|表示集合A中元素的个数。培训专用7.5 证据理论类概率函数的性质(1)、(2)、(3)、(5)、培训专用7.5 知识不确定性的表示在该模型中,不确定的知识可表示为H是结论,用样本空间 中的子集表示。CF是可信度因子,满足培训专用7.5 证据理论证据的不确定
16、性证据E的不确定性用CER(E)表示,取值范围为0,1。结论不确定性的计算(1)、求H的概率分配函数。培训专用7.5 证据理论如果有两条知识支持同一结论,即:则分别计算出每一条知识的概率分配函数:对m1和m2求正交和得到H的概率分配函数m。培训专用7.5 证据理论结论不确定性的计算(2)、求出信任函数、似然函数和类概率函数(3)、H的确定性 其中,是知识的前提条件与培训专用7.5 证据理论相应证据的匹配度,定义为培训专用实际计算时,采用辨别框的方法。例 设有如下知识:r1:IF E1 and E2 then G=g1,g2 CF=0.2,0.6 r2:IF G and E3 then A=a1
17、,a2 CF=0.3,0.5 r3:IF E4 and(E5 or E6)then B=b1 CF=0.7 r4:IF A then H=h1,h2,h3 CF=0.2,0.6,0.1 r5:IF B then H=h1,h2,h3 CF=0.4,0.2,0.1培训专用7.5 证据理论已知初始数据的确定性:CER(E1)=0.7,CER(E2)=0.8,CER(E3)=0.6CER(E4)=0.9,CER(E5)=0.5,CER(E6)=0.7假设辨别框中元素的个数为10,求 CER(H)=?证据理论的特点比概率论更弱的公理体系;能处理由“不知道”所引起的不确定性;辨别框太大时,计算复杂。培训
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 不确定性 处理 117 PPT
限制150内