于基fpga的直接数字合成器设计.doc
《于基fpga的直接数字合成器设计.doc》由会员分享,可在线阅读,更多相关《于基fpga的直接数字合成器设计.doc(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、天津职业技术师范大学Tianjin University of Technology and Education毕 业 设 计基于FPGA的直接数字合成器设计 二一二 年 六 月I天津职业技术师范大学本科生毕业设计基于FPGA的直接数字合成器设计The design of direct digital frequency synthesizer based on FPGA 专业班级: 学生姓名: 指导教师: 学 院:电子工程学院 2012 年 6 月II摘 要直接数字合成(Direct Digital Synthesis)技术采用全数字的合成方法。本设计结合了EDA技术和DDS技术,EDA技术
2、是现代电子设计技术的核心,是以电子系统设计为应用方向的电子产品自动化设计技术。DDS技术则是最为先进的频率合成技术,所产生的信号具有频率分辨率高、频率切换速度快、频率切换时相位连续,输出相位噪声低和可以产生任意波形等诸多优点。本文在对现有DDS技术的大量文献调研的基础上,提出了符合FPGA结构的DDS设计方案,并利用Quartus II软件在Cyclone II系列器件上进行了实现,详细的介绍了本次设计的具体实现过程和方法,将现场可编程逻辑器件FPGA和DDS技术相结合,体现了基于VHDL语言的灵活设计和修改方式是对传统频率合成实现方法的一次重要改进。FPGA器件作为系统控制的核心,其灵活的现
3、场可更改性,可再配置能力,对系统的各种改进非常方便,在不更改硬件电路的基础上还可以进一步提高系统的性能。文章给出的仿真结果,经过验证本设计能够达到其预期性能指标。关键词:直接数字合成器;现场可编程逻辑门阵列;硬件描述语言ABSTRACTThe DDS technique adopts full digital synthesis methods. The design combines EDA and DDS technology, EDA technology is the design of modern electronic technology at the core, electro
4、nic system design direction for the application of electronic design automation products technology. DDS technology is the most advanced frequency synthesizer technology. The generated signals have advantages of high frequency resolutions, fast frequency switching, continuous phase while frequency s
5、witching, low noise phase and being able to generate arbitrary waveforms.In this paper, after reviewing a lot of literatures published on DDS technology, DDS scheme based on FPGA structure are proposed, and then implemented in Cyclone II series FPGA using Quartus II tool.the paper introduced the con
6、crete implementation process, this way associates DDS with field programmable gate array FPGA technology , the way based on VHDL is flexible in designing and modifying, which is a important innovation to the tradition synthesize way, FPGA device control core as system, its flexible scene can alterin
7、g, can dispose ability again, very convenient to various kinds of improvement of the system, can also improve systematic performance further on the basis of altering hardware circuit. at the end of paper , the author displays simulation result, after verification, the design meets the demand of orig
8、inal definition.Key words: DDS; FPGA; VHDLII目 录1 引 言11.1 课题背景11.2 课题研究的目的和意义11.3 国内外概况21.4 课题的主要研究工作31.4.1现场可编程门阵列(FPGA)41.4.2硬件描述语言(VHDL)41.4.3 EDA工具Quartus II52 系统设计方案的研究72.1 系统实现的原理72.1.1 DDS的基本原理72.1.2 FPGA实现的直接数字频率合成器92.1.3移相原理102.2 系统实现方案分析与比较122.2.1频率合成器方案122.2.2移相方案142.2.3存储器方案152.2.4存储器寻址方案
9、162.3 FPGA器件的选择163 总体设计203.1 相位累加器部分203.2 相位/幅度转换电路203.3 波形表的生成213.4 D/A转换电路223.5 其它模块253.5.1锁相环(PLL)253.5.2分频器263.5.3电源模块273.5.4键盘电路和显示电路274 系统的实现294.1 系统的计算294.2 系统的实现30结 论33参考文献34致 谢36附录1:DDS顶层模块图37附录2:源程序清单38天津职业技术师范大学2012届本科生毕业设计1引 言1.1 课题背景在一些电子设备的电路板故障检测仪中,往往需要频率、幅度都能由计算机自动调节的信号源。采用诸如MAX038信号
10、发生器芯片外加电阻及切换开关等器件虽然也能调节频率和幅度,但这种调节是离散的,且电路复杂,使用不方便1。而采用直接数字合成芯片DDS及外加D/A转换芯片构成的可控信号源,可产生正弦波、调频波、调幅波及方波等,并且其信号的频率和幅度可由微机来精确控制,调节非常方便。另外随着21世纪的到来,人类正在跨入信息时代。现代通信系统的发展方向是功能更强、体积更小、速度更快、功耗更低。而大规模可编程器件CPLD/FPGA在集成度、功能和速度上的优势正好满足通信系统的这些要求。所以今天无论是民用的移动电话、程控交换机、集群电台、广播发射机和调制解调器,还是军用的雷达设备、图形处理仪器、遥控遥测设备、加密通信机
11、中,都已广泛地使用大规模可编程器件2。由于数字技术在处理和传输信息方面的各种优点,数字技术和数字集成电路的使用已经成为构成现代电子系统的重要标志。电子系统的集成化,不仅可使系统的体积小、重量轻且功耗低,更重要的是可使系统的可靠性大大提高。因此自集成电路问世以来,集成规模便以10倍/6年的速度增长。从20世纪90年代初以来,电子系统日趋数字化、复杂化和大规模集成化。为满足个人电脑、无绳电话和高速数据传输设备的发展需求,电子厂商们越加迫切地追求电子产品的高功能、优品质、低成本、微功耗和微小封装尺寸3。为达到此目标,必须采用少量的IC器件使面积尽可能小。1.2 课题研究的目的和意义正弦信号发生器作为
12、电子技术领域中最基本的电子仪器,广泛应用于航空航天测控、通信系统、电子对抗、电子测量、科研等各个领域中。随着电子信息技术的发展,对其性能的要求也越来越高,如要求频率稳定性高、转换速度快,具有调幅、调频等功能,另外还经常需要两路正弦信号不仅具有相同的频率,同时要有确定的相位差4。随着数字信号处理和集成电路技术的发展,直接数字合成(DDS)的应用也越来越广泛。DDS具有相位和频率分辨率高、稳定度好、频率转换时间短、输出相位连续、可以实现多种数字与模拟调制的优点,而可编程门阵列(FPGA)具有集成度高、通用性好、设计灵活、编程方便、可以实现芯片的动态重构等特点,因此可以快速地完成复杂的数字系统。由于
13、模拟调相方法有生产性差、调试不方便、调制度控制不精确等缺点,因此采用数字方法实现各种模拟调制也越来越普遍5。现在许多DDS芯片都直接提供了实现多种数字调制的功能,实现起来比较简单,而要实现模拟线性调制具有一定的难度。因此本设计介绍了一种采用FPGA实现DDS功能,产生频率和相位可调的正弦波信号的方法。波形发生器也可以通过巧妙的软件设计和简易的硬件电路,产生数字式的正弦波相位、频率和幅值可调的信号。信号的频率、相位可通过键盘输入并显示。与现有各类型波形发生器比较而言,产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便,成本低。1.3 国内外概况目前市场上已有的信号发生器有很多种,其电路
14、形式有采用运放及分立元件构成;也有采用单片集成的函数发生器;以及以单片机和FPGA为核心,辅以必要的模拟电路构成的DDFS数字信号发生器。在保证信号发生器的稳定性、频率范围、幅值范围等指标的同时,实现对输出信号的频率、相位和幅值的数字控制是现代信号发生器的发展方向。1971年,美国学者J.Tierney等人撰写的文章“A Digital Frequency Synthesizer”首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成原理。限于当时的技术和器件水平,它的性能指标尚不能与已有的技术相比,故未受到重视。近10年间,随着微电子技术的迅速发展,直接数字合成器(DDS)
15、得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的骄骄者6。DDS在相对带宽、频率转换时间、高分辨力、相位连续性、正交输出以及集成化等一系列性能指标方面远远超过了传统频率合成技术所能达到的水平,为系统提供了优于模拟信号源的性能。其优点如下:(1)输出频率相对带宽较宽。输出频率带宽为50%fclk(理论值),但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fclk。 (2)频率转换时间短。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。事实上,在DDS的频率控制字改变之后,需经过一个时钟周期
16、之后按照新的相位增量累加,才能实现频率的转换。因此,频率转换的时间等于频率控制字的传输时间,也就是一个时钟周期的时间。时钟频率越高,转换时间越短。DDS的频率转换时间可达纳秒数量级,比使用其它的频率合成方法都要短数个数量级。(3)频率分辨率极高。若时钟fclk的频率不变,DDS的频率分辨率就由相位累加器的位数N决定。只要增加相位累加器的位数N即可获得任意小的频率分辨率。目前,大多数DDS的分辨率在1HZ数量级,许多小于1MHZ,甚至更小。 (4)相位变化连续。改变DDS输出频率,实际上改变的每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相
17、位的连续性。(5)其他优点。可产生宽带正交信号及其他多种调制信号、可编程和全数字化、功耗低、体积小、重量轻、可靠性高、控制灵活方便等方面,并具有极高的性价比。 当然DDS也有局限性,主要表现如下: (1)输出频带范围有限。由于受DDS内部DAC和波形存储器(ROM)的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL、ECL工艺制作的DDS芯片,工作频率一般在几十MHZ至400MHZ左右。(2)输出杂散大。由于DDS采用全数字结构,不可避免地引入了杂散。其来源主要有三个:相位累加器相位舍位误差造成的杂散;幅度量化误差由存储器有限字长引起造成的杂散和DAC非理想特性造成的
18、杂散7。DDS问世之初,构成DDS的元器件的速度限制和数字化引起的噪声这两个主要缺点阻碍了DDS的发展与实际应用。随着近几年超高速数字电路的发展以及对DDS的深入研究,DDS的最高工作频率以及噪声性能已接近并达到锁相频率合成器相当的水平。近年来随着频率合成技术的发展,DDS已广泛应用于通讯、导航、雷达、遥控遥测、电子测量以及现代化的仪器仪表工业等领域8。1.4 课题的主要研究工作信号发生器一般是指能自动产生具有一定频率和幅度的正弦波、三角波(锯齿波)、方波(矩形波)、阶梯波等电压波形的电路或仪器9。本设计主要研究由现场可编程逻辑器件FPGA实现DDS功能,产生频率可调的正弦波信号,及其各功能模
19、块由硬件描述语言VHDL来实现和仿真的方法。1.4.1现场可编程门阵列(FPGA)FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。用户现场可编程门阵列FPGA是一种高密度的可编程逻辑器件。由于FPGA器件集成度高,方便易用,开发和上市周期短,在数字设计和电子生产中得到迅速普及和应用,并一度在高密度的可编程逻辑器件领域中独占鳌头。FPGA和CPLD都是高密度现场可编程逻辑芯片,都能够将大量的逻辑功能集成于一个单片集成电路中,其集成度已发展到现在的几百万门。现场可编程门阵列FPG
20、A是由掩膜可编程门阵列(MPGA)和可编程逻辑器件二者演变而未的,并将它们的特性结合在一起,因此FPGA既有门阵列的高逻辑密度和通用性,又有可编程逻辑器件的用户可编程特性。FPGA通常由接线资源分隔的可编程逻辑单元(或宏单元)构成阵列,又由可编程I/O单元围绕阵列构成整个芯片,其内部资源是分段互联的,因而延时不可预测,只有编程完毕后才能实际测量。1.4.2硬件描述语言(VHDL)超高速集成电路硬件描述语言(Very High Speed Integrated Circuit Hardware Description Language,VHDL)于1983年有美国国防部(DOD)发起创建,由IE
21、EE(The Institute of Electrical and Electronics Engineers)进一步发展并在1987年作为“IEEE 标准1076”发布。从此,VHDL成为硬件描述语言的业界标准之一。自IEEE公布了VHDL的标准版本之后,各EDA公司相继推出了自己的VHDL设计环境,或宣布自己的设计工具支持VHDL。此后VHDL在电子设计领域得到了广泛应用,并逐步取代了原有的非标准硬件描述语言。1993年,IEEE对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即IEEE标准的1076-1993版本,(简称93版)。现在,
22、VHDL和Verilog作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。有专家认为,在新的世纪中,VHDL语言将承担起大部分的数字系统设计任务。除了作为电子系统设计的主选硬件描述语言外,VHDL在EDA领域的仿真测试、程序模块的移植、ASIC设计源程序的交付、IP核(Intelligence Property core)的应用方面担任着不可或缺的角色,因此不可避免地将成为了必要的设计开发工具。VHDL主要用于描述数字系统的结构、行为、功能和接口。除了含有许多具有硬件特征的语句外,VHDL的语言形式和描述风格与句法是十分类似于一般的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- fpga 直接 数字 合成器 设计
限制150内