基于matlab的时滞系统pid参数稳定域研究-毕设论文.doc
《基于matlab的时滞系统pid参数稳定域研究-毕设论文.doc》由会员分享,可在线阅读,更多相关《基于matlab的时滞系统pid参数稳定域研究-毕设论文.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基于Matlab的时滞系统PID参数稳定域研究基于MATLAB的时滞系统PID参数稳定域研究目 录1 绪论11.1 时滞的产生11.2 纯滞后的定义21.3 纯滞后的特点31.4 时滞系统控制常规方法31.5 本文主要内容72 滞后过程PID控制器参数整定方法82.1 PID控制方法简介82.1.1比例作用92.1.2积分作用92.1.3微分作用102.2 PID控制器性能设计方法112.2.1 PID参数的稳定边界法整定(基于Simulink环境)112.2.2 临界比例度法132.2.3 图解稳定性准则的参数整定方法142.2.4 PI控制器参数稳定域162.2.5 相角裕度和幅值裕度17
2、2.2.6仿真算例182.2.7 PID控制器参数稳定域图解法223 一阶时滞系统的PID控制器MATLAB/SIMULINK仿真283.1一阶开环不稳定时滞系统283.2一阶开环稳定时滞系统29结束语32参考文献33致 谢35I1 绪论工业现场有很多时滞现象,具有时滞特性的控制对象是非常普遍的,例如造纸生产过程、精馏塔提馏级湍度控制过程、火箭发动机燃烧室中的燃烧过程等都是典型的时滞系统。由于时滞的存在使得被调量不能及时反映控制信号的动作,控制信号的作用只有在延迟:以后才能反映到被调量;另一方面,当对象受到干扰而引起被调量改变时,控制器产生的控制作用不能及时对干扰产生抑制作用。因此,含有时滞环
3、节的闭环控制系统必然存在较大的超调量和较长的调节时间。时滞对象也因此成为难控对象,而且时滞占整个动态过程的时间越长,难控的程度越大。因此时滞系统的控制一直受到许多学者的关注,成为重要的研究课题之一1-3。 本章阐述了滞后系统产生的原因,给出了滞后的定义,以及把研究重点转移到对纯滞后系统上,并说明转移重点的原由,同时对纯滞后对象的特点进行简要分析,介绍了时滞系统的控制方法研究的现状以及国内外PID控制和研究现状,最后介绍本文的主要内容。1.1 时滞的产生 滞后是工业过程中的一种普遍现象,其特点是当控制量发生变化时,被控量并不立即改变,而要延迟一段时间才开始变化。包含时间滞后环节的系统就称为时滞系
4、统。在时滞系统中,由于时间延迟的存在,使得被控量不能及时反映系统所承受的扰动,即使测量信号到达控制器,调节机构接受控制信号后立即动作,也需要经过纯延迟时间以后,才波及被控量,使之受到控制。在工业过程中造成时滞的机理各不相同,可以认为主要由以下几种因素造成的:(1)由控制对象的结构造成的。在控制对象中,由于设备结构和工艺的要求,控制量和被控制量之间有一段距离。这样在被控量发生变化时,由于需要物料的传送、传热、传质等过程,因而要经过一段时间被控量才发生变化,这就产生了时滞。因为被控量是由检测装置测量的,故可以说时滞是由测量点的位置所引起的。(2)由在线分析仪表造成的。在某些过程控制系统中,为了有效
5、的控制产品的质量,用在线质量分析仪表直接对产品质量进行分析。仪表每分析一次样品都需要一定的时间才能分析出结果,这段时间必然会增加系统的时滞。(3)由等效辩识模型造成的。前面两种情况中的时滞都是系统中确实存在时间延迟造成的。有些系统中并不存在严格意义下的时间延迟,而只是为了分析上的方便而做的近似,这种近似也是时滞产生的原因之一4。 综合上述内容,我们可以把由因素(1) (2)造成的时滞现象归结为纯滞后现象,可以知道纯滞后产生的原因是被控对象的物理性质,以及实际系统变量的测量传递和处理等方面的因素,是一种比较不易忽视的输出对于输入时间的滞后现象。事实上,工业生产过程中的各种由时滞引起的误差都可归结
6、为或者近似归结为纯滞后现象引起的,所以本文将重点转移到对纯滞后系统的研究上。1.2 纯滞后的定义 对于纯滞后环节,当输入一个信号后输出不立即有所反应,而是经过一定的时间后才会反应出来,而且输入和输出在数值上无不同,仅是在时间上有一定的滞后,称这段时间为纯滞后时间,常用表示。纯滞后环节的输入输出特性如图1-1所示。其中图(a)表示阶跃响应,图(b)为任一时间函数的响应。这种纯滞后的产生通常是由于物料传输时间造成的,此时,纯滞后可用= L/v(L为物料传输距离、v为物料传输速度)来计算。 (a) (b)图1-1 纯滞后环节的时间特性 在流程工业过程中,生产过程的动态特性一般很复杂(非线性、时变、分
7、布参数等),常常借用实验的方法来测取其动态特性。图1-2为常用的一种实验方法,通过获取生产过程的阶跃响应曲线,来求取纯滞后时间,此时的纯滞后时间我们称为等效纯滞后时间,这种方法在流程工业中普遍采用。图1-2 实验法求取纯滞后时间1.3 纯滞后的特点 一般工业过程控制对象的数学模型可以近似表示为: (1-1) 衡量过程具有纯时滞的大小通常采用过程纯滞后时间和过程惯性时间常数T之比/T。当/T 0.5时,称为具有大纯滞后的过程。 当采用闭环控制回路时,一旦对象具有纯时滞性质,这类控制系统纯时滞时间会使得被控量不能及时反映控制信号的动作,控制信号的作用只有在延迟以后才能反映到被控量;另一方面,当对象
8、受到干扰而引起被控量改变时,控制器产生的控制作用也不能及时对干扰产生抑制作用5。1.4 时滞系统控制常规方法 1942年齐格勒(Ziegler)和尼科尔斯(Nichols)首先提出了动态特性参数法(Z-N调节器参数整定公式)。因此在单变量控制系统中,可以利用常规调节器适应性强,调整方便的特点,经过仔细少量的调整,在控制要求不太苛刻的情况下满足生产过程的要求。这种方法比较简单,但是在精度要求很高的场合下这种方法就不行了,而需要采取其他的控制手段,其中史密斯(Smith)预估补偿方法最有影响。补偿控制是按照过程的特性设想出一种新的模型加入到反馈系统中,以补偿过程的动态特性。史密斯预估补偿的基本原理
9、图如图1-3。-Y(s)R(s)图1-3 闭环系统如果没有矩形框所示的支路,加上控制器器G(s),则整个闭环系统的传递函数为: (1-2)上式表明即使加了控制器Gc(s),整个闭环系统的特征方程还是有时滞部分。而加上史密斯预估补偿器以后,则整个闭环系统的传递函数为: (1-3)显然,式(1-3)的特征方程已经没有时滞部分了,也就是说,这个系统已经消除了时滞对系统特征方程的影响。此时就可以直接用经典控制理论的方法来设计控制器Gc(s)。整个过程的结果只是系统的输出向后推迟了时间而已。虽然史密斯预估补偿法能够很好的消除掉时滞对系统的影响,但是缺陷也是很明显的,就是史密斯预估补偿法要求整个系统的模型
10、参数精确度很高6。因此在工业中的应用范围受到局限。为了弥补和改善史密斯预估补偿器的缺点和性能,后来的学者提出了很多方法,例如 1977年Giles和Bartley在史密斯方法的基础上提出了增益自适应补偿方案,1980年Hang等提出的改进型史密斯预估器。但是至今仍无一个通用的行之有效的方法来克服时滞对消所带来的鲁棒稳定性的影响,因此这方面的研究也在发展中7。还有一种发展比较快的整定方法就是预测控制8。预测控制是一类利用计算机的控制算法,被控对象的表示方法都是基于离散时间的。它具有建立预测模型方便、采用滚动优化策略、采用模型误差反馈校正等特征,此外由于预测控制采用了多步预测的方法,增加了反映过程
11、未来变化趋势的信息量,因而能克服各种不确定性因素和复杂变化对系统所造成的影响,使预测控制能在各种复杂生产过程中获得好的应用效果,并具有较强的鲁棒性。但是目前的预测控制算法普遍存在模型预测精度不高、滚动优化策略少、反馈校正方法单调等问题9。PID控制,Smith预估算法,预测控制是在时滞系统整定过程中用的比较多的三种方法9。PID控制是生命力最强的基本控制方式,具有结构简单,原理清晰,适应性强和鲁棒性强的优点而成为工业控制中最广泛应用的基本控制方式之一。Smith预估算法能够在过程的动态模型和时滞项都比较精确的情况下消除时滞对系统控制性能的影响。预测控制能适应于复杂生产过程,并且鲁棒性也不错。这
12、三种方法广泛地运用在工业过程控制中,其中占统治地位的仍然是PID调节器10。PID控制是比例积分微分控制的简称。PID控制具有以下优点:l)原理简单,使用方便。2)适应性强,可以广泛地应用到化工、热工、冶金、炼油以及造纸、建材等各种生产部门。3)鲁棒性强。由于具有这些优点,过程控制系统中的对象通常是用PID控制器来整定的,实际在过程控制中,超过95%的控制器是PID控制器11。Ziegler和Nichols阶跃响应是确定PID参数的简单方法,这种方法仅根据时滞时间和时间常数来整定控制器的参数12。但是该方法仅在时滞时间与时间常数之比处于0.1-1之间时才适用,对于大的时滞需采取专门补偿措施。另
13、外该方法借助于作图来确定特征参数,得到的控制器是使用尚可的或次优的。知名学者Astrom曾提出基于继电反馈的方法,该方法的基本思路是在继电反馈下观测过程的极限环振荡,并由极限环的特征来确定过程的基本性质,然后算出PID控制器的参数。传统的PID参数整定方法都具有物理意义明确的优点,并且这些方法还将长期被人们使用,曾经为过程工业自动化的发展起到极大的促进作用,但是随着人们对过程工业综合自动化的要求越来越高,多回路强祸合系统控制器的整定要求对PID参数的整定提出了更大的挑战13。为解决传统的PID参数整定的不足,相继有人提出了各种形式的PID参数自整定方案14。PID参数的自整定一般包括两部分内容
14、:一是过程特性的提取,也称为初期校正部分,即对过程进行辨识,得到过程的动特性,求得过程的增益、时间常数、延迟时间,然后根据过程的特征参数按照部分模型匹配法设定PID参数;二是确定相应的最优控制器参数,也称为在线校正部分,是通过对控制响应的波形进行在线监视,求出控制性能指标,即超调量、振幅衰减比等,然后建立调整规则对PID参数进行更新。我国有人提出模式识别法PID参数自整定,这是一种具有最优参数的PID自整定系统,过程的特性在线获取,具体来说就是以模式类的描述和模式分类来辨识系统结构,以基于模式识别的优化方法来估计系统参数,这很适合于复杂的非线性系统及缺乏先验知识的场合,PID参数的优化可以根据
15、不同的性能准则进行选取。目前,误差准则函数使用较多,由于计算机的应用使得参数寻优变得容易,我国学者项国波曾对ITAE性能准则进行了卓有成效研究。谢新民等曾提出过具有专家系统的PID自整定方法,做法是将知识库用于PID参数调整,该方法对特定的工业对象还是很有效的,它能克服采用参数自适应,自调整PID控制算法经常出现的计算时间、硬件花费与工业现场要求的低成本、易维护、易操作之间的矛盾。随着系统辨识的发展,各种为PID参数自整定而做的过程辨识也应运而生,国内外都有学者对此进行过深入的研究,利用时间及频率加权,在保持简单性的前提下,可以用来辨识通用的时不变线性系统,采用模型降阶的方法,基于一阶或二阶时
16、滞模型的调整规划来调整PID控制器,所建议的方法对测量噪声及扰动表现出鲁棒性。文献中提出的基于递推参数估计的PID自整定方法是针对大多数受控工业过程是稳定的而进行的,在满足闭环可辨识的条件下,辨识受控过程的开环非参数模型,在频域中加以整定,通过在线校正整定系数可以在较短的时间内获得理想的PID控制参数。近年来,随着智能控制理论的发展,模糊控制及神经元控制日益受到控制界的重视,出现了基于模糊推理的PID自整定控制器及自寻优模糊PID控制器,使系统具有学习功能,可以对模糊规则进行修改,这种控制器因不依赖于具体的模型,因而鲁棒性很强,应用单个神经元的PID控制已有人提出。基于神经网络的PID控制器产
17、生的原因是由于神经网络在一定的条件下可以逼近非线性,这样可在一定程度上解决在整个工作范围内和保持长期工作的最优化问题。模糊控制以其简单性也渗透到PID参数的自整定,但模糊控制的积分作用较弱,稳态精度低,为克服这一缺点已经有人给出相应的对策。近年来,DCS控制的发展为做为基础控制级的现场控制器的更新提供了更大的机遇,但PID控制仍以其独有的优势被人们保留下来,只不过PID控制器的性能一步步提高14。PID控制器的参数整定主要走融合发展的道路,具体体现在以下两个方面:(l)先进控制理论对PID整定的促进作用。自适应控制中的MRAS,STR模型适应与调节器适应思想可能导致非线性自适应 PID控制器。
18、神经网络权值的在线学习有望摆脱PID参数整定对模型的依赖性。(2)数学模型的新的辨识技术会推动人们对PID参数整定的概念的更深刻的理解。经过几代研究人员和工程人员的努力,PID及基于PID的各种改进型的控制器的研究和应用己相当成熟,是当前控制工程的主流控制器,其实用性和有效性是毋庸质疑的。但是PID控制器仍有许多不足和需要进一步改进之处,特别是把PID型控制器用于复杂对象(主要是时延较大、参数时变较快、不确定性明显和非线性严重)的控制时,控制质量还是不够理想。因此,如何成功地把PID型控制器用于复杂对象的控制,是PID型控制器今后研究的主要方向。1.5 本文主要内容对PID控制器的设计和应用,
19、核心问题是PID参数的整定,即确定参数的稳定域问题。如何在被控对象的实际变化状况下,解决静态与动态性能之间,鲁棒性与控制性能之间的矛盾,成为众多研究者和生产者非常关注的课题。为了解决这个问题,人们提出了大量的理论和改进技术,众多的PID参数整定方法不断涌现15-17。本文针对带滞后因子的一阶惯性环节,基于一种时滞系统图解稳定性准则,讨论PI控制器参数稳定域的确定,并将这种思想推广应用于相角裕度和幅值裕度的设计。所采用的图解稳定性准则给出了时滞系统稳定的充分必要条件,所得结果没有任何保守性。在参数空间直接绘制PID控制器的稳定参数边界曲线和相角裕度、幅值裕度曲线,避免了复杂的数学计算。给出了确定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 matlab 系统 pid 参数 稳定 研究 论文
限制150内