《广西柳州市柳南区、城中区重点达标名校2023届中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广西柳州市柳南区、城中区重点达标名校2023届中考三模数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC的度数为( )A90B60C45D
2、302如图,在矩形ABCD中,AD=1,AB1,AG平分BAD,分别过点B,C作BEAG 于点E,CFAG于点F,则AEGF的值为( )A1BCD3如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D104化简:(a+)(1)的结果等于()Aa2Ba+2CD5某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )A8米B米C米D米6如图,O的半径OD弦AB于点C,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD7如图,ab,点B在直线b
3、上,且ABBC,1=40,那么2的度数( )A40B50C60D908正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD9如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD10下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧ABC全等的是()A甲和乙B乙和丙C甲和丙D只有丙11对于反比例函数y=(k0),下列所给的四个结论中,正确的是()A若点(3,6)在其图象上,则(3,6)也在其图象上B当k0时,y随x的增大而减小C过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB
4、的面积为kD反比例函数的图象关于直线y=x成轴对称12已知点A(0,4),B(8,0)和C(a,a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()ABCD2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 14函数y= 中,自变量x的取值范围为_15一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_16某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅
5、不完整的统计图该年级共有700人,估计该年级足球测试成绩为D等的人数为_人17在ABC中,C30,AB30,则A_18抛物线 的顶点坐标是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求ABC的面积20(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30,他又继续走下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大
6、树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度21(6分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长22(8分)如图1,已知抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)两点(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,在坐标平
7、面内有点P,求出所有满足PODNOB的点P坐标(点P、O、D分别与点N、O、B对应) 23(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由24(10分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元(1)求“最美东营人”和“最美志
8、愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?25(10分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数图象上三个点的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围26(12分)小明和小
9、刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家用树形图或列表法求只进行两局游戏便能确定赢家的概率27(12分)如图所示,已知一次函数(k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D若OA=OB=OD=1(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式参考答案一、选择题(
10、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理2、D【解析】设AE=x,则AB=x,由矩形的性质得出BAD=D=90,CD=AB,证明ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.【详解】设AE=x,四边形ABCD是矩形,B
11、AD=D=90,CD=AB,AG平分BAD,DAG=45,ADG是等腰直角三角形,DG=AD=1,AG=AD=,同理:BE=AE=x, CD=AB=x,CG=CD-DG=x -1,同理: CG=GF,FG= ,AE-GF=x-(x-)=.故选D.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.3、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC,BD相交于点O,BAD=90,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,A
12、D=2OM=1在直角ABD中,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键4、B【解析】解:原式=故选B考点:分式的混合运算5、C【解析】此题考查的是解直角三角形如图:AC=4,ACBC,梯子的倾斜角(梯子与地面的夹角)不能60ABC60,最大角为60即梯子的长至少为米,故选C.6、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的定义即可求出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC
13、=BC=4,CD=2,OC=r-2,由勾股定理可知:r2=(r-2)2+42,r=5,BCE中,由勾股定理可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型7、B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:ABBC,ABC=90,点B在直线b上,1+ABC+3=180,3=180-1-90=50,ab,2=3=50.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.8、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k0,得
14、k0,k20,函数y=(k2)x+1k图象经过一、二、四象限,故选B.9、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0
15、有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A10、B【解析】分析:根据三角形全等的判定方法得出乙和丙与ABC全等,甲与ABC不全等详解:乙和ABC全等;理由如下:在ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和ABC全等;在ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和ABC全等;不能判定甲与ABC全等;故选B点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个
16、三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角11、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A若点(3,6)在其图象上,则(3,6)不在其图象上,故本选项不符合题意; B当k0时,y随x的增大而减小,错误,应该是当k0时,在每个象限,y随x的增大而减小;故本选项不符合题意; C错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意; D正确,本选项符合题意 故选D点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型1
17、2、B【解析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可【详解】AB的中点D的坐标是(4,-2),C(a,-a)在一次函数y=-x上,设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1根据题意得:,解得:,则交点的坐标是(3,-3)则这个圆的半径的最小值是:=故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键二、填空题:(本大题共6个小题,
18、每小题4分,共24分)13、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.14、x1【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-10,解得x的范围【详解】根据题意得:x10,解得:x1.故答案为x1.【点睛】本
19、题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.15、1【解析】一组数据中出现次数最多的数据叫做众数,由此可得出答案【详解】一组数据1,3,5,x,1,5的众数和中位数都是1,x=1,故答案为1【点睛】本题考查了众数的知识,解答本题的关键是掌握众数的定义16、1【解析】试题解析:总人数为1428%=50(人),该年级足球测试成绩为D等的人数为(人)故答案为:117、90【解析】根据三角形内角和得到A+B+C180,而C30,则可计算出A+B+150,由于AB30,把两式相加消去B即可求得A的度数【详解】解:A+B+C180,C30,A+B+150,AB30,2A180,A90故
20、答案为:90【点睛】本题考查了三角形内角和定理:三角形内角和是180主要用在求三角形中角的度数直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角18、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),故答案为(0,-1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案试题解析:BD3+
21、AD3=63+83=303=AB3,ABD是直角三角形,ADBC,在RtACD中,CD=,SABC=BCAD=(BD+CD)AD=338=3,因此ABC的面积为3答:ABC的面积是3考点:3勾股定理的逆定理;3勾股定理20、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,ECD60,ACE是直角三角形,AFBD,CAF30,CAE
22、60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.21、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问
23、题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x
24、+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.22、(1)抛物线的解析式是y=x23x;(2)D点的坐标为(4,4);(3)点P的坐标是()或()【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标试题解析:(1)抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8
25、)将A与B两点坐标代入得:,解得:,抛物线的解析式是y=x23x (2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1 直线OB的解析式为y=x, 直线OB向下平移m个单位长度后的解析式为:y=xm,xm=x23x, 抛物线与直线只有一个公共点, =162m=0,解得:m=8, 此时x1=x2=4,y=x23x=4, D点的坐标为(4,4)(3)直线OB的解析式为y=x,且A(6,0),点A关于直线OB的对称点A的坐标是(0,6),根据轴对称性质和三线合一性质得出ABO=ABO,设直线AB的解析式为y=k2x+6,过点(8,8),8k2+6=8,解得:k2=
26、, 直线AB的解析式是y=,NBO=ABO,ABO=ABO, BA和BN重合,即点N在直线AB上,设点N(n,),又点N在抛物线y=x23x上,=n23n, 解得:n1=,n2=8(不合题意,舍去)N点的坐标为(,)如图1,将NOB沿x轴翻折,得到N1OB1, 则N1(,-),B1(8,8),O、D、B1都在直线y=x上P1ODNOB,NOBN1OB1, P1ODN1OB1, 点P1的坐标为()将OP1D沿直线y=x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或()【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折
27、变换的性质得出对应点关系是解题关键23、(1)y;(1)(1,0)或(1,0)【解析】(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出A60,B30,求出线段OA和OB,求出AOB的面积,根据已知SAOPSAOB,求出OP长,即可求出答案【详解】(1)把A(,1)代入反比例函数y得:k1,所以反比例函数的表达式为y;(1)A(,1),OAAB,ABx轴于C,OC,AC1,OA1tanA,A60OAOB,AOB90,B30,OB1OC1,SAOBOAOB11SAOPSAOB,OPACAC1,OP1,点P的坐标为(1,0)或(1,0)【点睛】本题考查了用待定系数法求反比例函数的解析
28、式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出AOB的面积是解答此题的关键24、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.【解析】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解【详解
29、】(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,由题意,得,解得:答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,由题意,得,解得:41m1m是整数,m=42,43,2则90-m=48,47,3答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件【点睛】本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读
30、懂题意,找到关键描述语,进而找到所求的量的数量关系25、(0,),(4,3)【解析】试题分析:()根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;()利用待定系数法求解可得试题解析:解:()由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,3)、(1,0)故答案为:(0,)、(4,3)、(1,0)()设这个二次函数的解析式为y=ax2+bx+c,将()三点坐标代入,得:,解得:,所以所求抛物线解析式为y=x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0x126、(1),(2)【解析】解:(1)画树状图得:
31、总共有9种等可能情况,每人获胜的情形都是3种,两人获胜的概率都是(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为任选其中一人的情形可画树状图得:总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,两局游戏能确定赢家的概率为:(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案27、(1)A(1,0),B(0,1),D(1,0)(2)一次函数的解析式为 反比例函数的解析式为【解析】解:(1)OA=OB=OD=1,点A、B、D的坐标分别为A(1,0),B(0,1),D(1,0)。(2)点A、B在一次函数(k0)的图象上,解得。一次函数的解析式为。点C在一次函数y=x+1的图象上,且CDx轴,点C的坐标为(1,2)。又点C在反比例函数(m0)的图象上,m=12=2。反比例函数的解析式为。(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。
限制150内