《广西省崇左重点达标名校2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《广西省崇左重点达标名校2022-2023学年中考数学五模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,、是的切线,点在上运动,且不与,重合,是直径,当时,的度数是()ABCD2将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD3如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m24A、B两地相距
3、180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h若设原来的平均车速为xkm/h,则根据题意可列方程为ABCD5某一超市在“五一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A能中奖一次B能中奖两次C至少能中奖一次D中奖次数不能确定6如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点B,则OAC与BAD的面积之差SOACSBAD为()A36B12C6D37下列等式正确的是()A(a+b)2=a2+b2B3n
4、+3n+3n=3n+1Ca3+a3=a6D(ab)2=a8如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )ABCD9如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD10单项式2a3b的次数是()A2B3C4D5二、填空题(本大题共6个小题,每小题3分,共18分)11甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)12分解因式:8a38a2+2
5、a=_13的绝对值是_14一个n边形的内角和为1080,则n=_.15如图,在ABC中,BD和CE是ABC的两条角平分线若A52,则12的度数为_16如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1)(1)求抛物线的解析式;(2)猜想EDB的形状并加以证
6、明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由18(8分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.19(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回
7、答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?20(8分)先化简,再求值:,其中与2,3构成的三边,且为整数.21(8分)在ABC中,AB=BC=2,ABC=120,将ABC绕着点B顺时针旋转角a(0a90)得到A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论(2)如图2,当a=30时,试判断四边形BC1DA的形状,并证明(3)在(2)的条件下,求线段DE的长度22(10分)如图1,在四边形ABCD中,AB=ADB+ADC=1
8、80,点E,F分别在四边形ABCD的边BC,CD上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系.图1 图2 图3(1)思路梳理将ABE绕点A逆时针旋转至ADG,使AB与AD重合.由B+ADC=180,得FDG=180,即点F,D,G三点共线. 易证AFG ,故EF,BE,DF之间的数量关系为 ;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,EAF=BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在ABC中,BAC=90,AB=AC,点D,E均在边BC上,且DAE=45.
9、若BD=1,EC=2,则DE的长为 .23(12分)如图,C是O上一点,点P在直径AB的延长线上,O的半径为3,PB=2,PC=1(1)求证:PC是O的切线(2)求tanCAB的值24某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节
10、目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得【详解】解,连结OB,、是的切线,则,四边形APBO的内角和为360,即,又,故选:B【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答2、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详
11、解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.3、D【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可【详解】经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,小石子落在不规则区域的概率为0.65,正方形的边长为4m,面积为16
12、 m2设不规则部分的面积为s m2则=0.65解得:s=10.4故答案为:D【点睛】利用频率估计概率4、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:=1故选A【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键5、D【解析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D【点睛】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件6
13、、D【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论解:设OAC和BAD的直角边长分别为a、b,则点B的坐标为(a+b,ab)点B在反比例函数的第一象限图象上,(a+b)(ab)=a2b2=1SOACSBAD=a2b2=(a2b2)=1=2故选D点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2b2的值解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键7、B【解析】(1)根据完
14、全平方公式进行解答; (2)根据合并同类项进行解答;(3)根据合并同类项进行解答;(4)根据幂的乘方进行解答.【详解】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、3n+3n+3n=3n+1,正确;C、a3+a3=2a3,故此选项错误;D、(ab)2=a2b,故此选项错误;故选B【点睛】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.8、B【解析】试题解析:转盘被等分成6个扇形区域,而黄色区域占其中的一个,指针指向黄色区域的概率=故选A考点:几何概率9、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系
15、定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度10、C【解析】分析:根据单项式的性质即可求出答案详解:该单项式的次数为:3+1=4故选C点睛:本题考查
16、单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型二、填空题(本大题共6个小题,每小题3分,共18分)11、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.12、2a(2a1)2【解析】提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.13、 【解析】绝对值是指一个数在数轴上所对应点到
17、原点的距离,用“|”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.14、1【解析】直接根据内角和公式计算即可求解.【详解】(n2)110=1010,解得n=1故答案为1【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.15、64【解析】解:A=52,ABC+ACB=128BD和CE是ABC的两条角平分线,1=ABC,2=ACB,1+2=(ABC+ACB)=64故答案为64点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180是解题的关键16、5【解析】根据题
18、意得出球在无滑动旋转中通过的路程为圆弧,根据弧长公式求出弧长即可【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:255,故答案为5【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度三、解答题(共8题,共72分)17、(1)y=x2+3x;(2)EDB为等腰直角三角形;证明见解析;(3)(,2)或(,2)【解析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长
19、,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FMAN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标【详解】解:(1)在矩形OABC中,OA=4,OC=3,A(4,0),C(0,3),抛物线经过O、A两点,抛物线顶点坐标为(2,3),可设抛物线解析式为y=a(x2)2+3,把A点坐标代入可得0=a(42)2+3,解得a=,抛物线解析式为y=(x2)2
20、+3,即y=x2+3x;(2)EDB为等腰直角三角形证明:由(1)可知B(4,3),且D(3,0),E(0,1),DE2=32+12=10,BD2=(43)2+32=10,BE2=42+(31)2=20,DE2+BD2=BE2,且DE=BD,EDB为等腰直角三角形;(3)存在理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得,解得,直线BE解析式为y=x+1,当x=2时,y=2,F(2,2),当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,点M的纵坐标为2或2,在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,
21、x2,x=,M点坐标为(,2);在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,x2,x=,M点坐标为(,2);当AF为平行四边形的对角线时,A(4,0),F(2,2),线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),设M(t,t2+3t),N(x,0),则t2+3t=2,解得t=,点M在抛物线对称轴右侧,x2,t2,t=,M点坐标为(,2);综上可知存在满足条件的点M,其坐标为(,2)或(,2)【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识在(1)中求得抛物线的
22、顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论本题考查知识点较多,综合性较强,难度较大18、(1)证明见解析;(2)【解析】(1)连接OC,AC,可先证明AC平分BAE,结合圆的性质可证明OCAE,可得OCB90,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案【详解】(1)证明:连接OC,ACCFAB,CEAD,且CECFCAECABOCOA,CABOCACAEOCAOCAEOCEAEC180,AEC90,OCE90即
23、OCCE,OC是O的半径,点C为半径外端,CE是O的切线(2)解:ADCD,DACDCACAB,DCAB,CAEOCA,OCAD,四边形AOCD是平行四边形,OCADa,AB2a,CAECAB,CDCBa,CBOCOB,OCB是等边三角形,在RtCFB中,CF ,S四边形ABCD (DCAB)CF【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径19、(1)4元或6元;(2)九折.【解析】解:(1)设每千克核桃应降价x元.根据题意,得(60x40)(100+20)=2240,化简,得
24、 x210x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元. 要尽可能让利于顾客,每千克核桃应降价6元.此时,售价为:606=54(元),.答:该店应按原售价的九折出售.20、1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.试题解析:原式= ,a与2、3构成ABC的三边,32a3+2,即1a5,又a为整数,a=2或3或4,当x=2或3时,原分式无意义,应舍去,当a=4时,原式=121、(1)(2)四边形是菱形.(3)【解析】(1)根据等边对等角及旋转的特征
25、可得即可证得结论;(2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E作于点G,解可得AE的长,结合菱形的性质即可求得结果【详解】(1)证明:(证法一)由旋转可知,又即(证法二)由旋转可知,而即(2)四边形是菱形.证明:同理四边形是平行四边形.又四边形是菱形(3)过点作于点,则在中,.由(2)知四边形是菱形,【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.22、(1)AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3) 【解析】试题分析:(1)先根据旋转得:计算 即点共线,再根据
26、SAS证明AFEAFG,得EF=FG,可得结论EF=DF+DG=DF+AE;(2)如图2,同理作辅助线:把ABE绕点A逆时针旋转至ADG,证明EAFGAF,得EF=FG,所以EF=DFDG=DFBE;(3)如图3,同理作辅助线:把ABD绕点A逆时针旋转至ACG,证明AEDAEG,得,先由勾股定理求的长,从而得结论试题解析:(1)思路梳理:如图1,把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,即AB=AD,由旋转得:ADG=A=,BE=DG,DAG=BAE,AE=AG,FDG=ADF+ADG=+=,即点F. D.G共线,四边形ABCD为矩形,BAD=,EAF=, 在AFE和AFG中, A
27、FEAFG(SAS), EF=FG,EF=DF+DG=DF+AE;故答案为:AFE,EF=DF+AE;(2)类比引申:如图2,EF=DFBE,理由是:把ABE绕点A逆时针旋转至ADG,可使AB与AD重合,则G在DC上,由旋转得:BE=DG,DAG=BAE,AE=AG,BAD=,BAE+BAG=,EAF=,FAG=,EAF=FAG=,在EAF和GAF中, EAFGAF(SAS), EF=FG,EF=DFDG=DFBE;(3)联想拓展:如图3,把ABD绕点A逆时针旋转至ACG,可使AB与AC重合,连接EG,由旋转得:AD=AG,BAD=CAG,BD=CG,BAC=,AB=AC,B=ACB=,ACG
28、=B=,BCG=ACB+ACG=+=,EC=2,CG=BD=1,由勾股定理得: BAD=CAG,BAC=,DAG=,BAD+EAC=,CAG+EAC=EAG,DAE=,DAE=EAG=,AE=AE,AEDAEG, 23、(1)见解析;(2).【解析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OCPC,由此可得出结论(2)先根据题意证明出PBCPCA,再根据相似三角形的性质得出边的比值,由此可得出结论【详解】(1)如图,连接OC、BCO的半径为3,PB=2OC=OB=3,OP=OB+PB=5PC=1OC2+PC2=OP2OCP是直角三角形,OCPCPC是O的切线(2)AB
29、是直径ACB=90ACO+OCB=90OCPCBCP+OCB=90BCP=ACOOA=OCA=ACOA=BCP在PBC和PCA中:BCP=A,P=PPBCPCA,tanCAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.24、(1)共调查了50名学生;统计图见解析;(2)72;(3).【解析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(2)用360乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解【详解】解:(1)1428%50,本次共调查了50名学生补全条形统计图如下(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为36072.(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,抽取的2名学生恰好来自同一个班级的概率P.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图
限制150内