《广东省广州市从化区2023届中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省广州市从化区2023届中考数学全真模拟试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若3x3y,则下列不等式中一定成立的是 ( )ABCD2下列几何体中,主视图和俯视图都为矩形的是()
2、ABCD34的绝对值是( )A4BC4D4如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个5反比例函数y的图象如图所示,以下结论:常数m1;在每个象限内,y随x的增大而增大;若点A(1,h),B(2,k)在图象上,则hk;若点P(x,y)在上,则点P(x,y)也在图象其中正确结论的个数是( )A1B2C3D46郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD
3、7不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A摸出的是3个白球B摸出的是3个黑球C摸出的是2个白球、1个黑球D摸出的是2个黑球、1个白球8将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )Ay=(x2)2+3 By=(x2)23 Cy=(x+2)2+3 Dy=(x+2)239正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是()Ak1Bk1Ck1Dk110如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCD1
4、1如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定12若分式有意义,则x的取值范围是( )Ax3Bx3Cx3Dx=3二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AE是正八边形ABCDEFGH的一条对角线,则BAE= 14如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_15设、是一元二次方程的两实数根,则的值为 .16化简的结果是_.17如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B
5、2,C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_18利用1个aa的正方形,1个bb的正方形和2个ab的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片,记录下数字请用列表法或树状图法求两次抽取的卡片上的
6、数字都是偶数的概率20(6分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?21(6分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F 求证:ABECAD;求BFD的度数.22(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的
7、足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?23(8分)如图,抛物线(a0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2
8、)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标24(10分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一
9、边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 25(10分)先化简,再求值:,其中a126(12分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个
10、球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明27(12分)已知ABC中,D为AB边上任意一点,DFAC交BC于F,AEBC,CDE=ABCACB,(1)如图1所示,当=60时,求证:DCE是等边三角形;(2)如图2所示,当=45时,求证:=;(3)如图3所示,当为任意锐角时,请直接写出线段CE与DE的数量关系:_. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的
11、四个选项中,只有一项是符合题目要求的)1、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A2、B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.3、A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.4、C【解析】根据图像可得:a0
12、,b0,c=0,即abc=0,则正确;当x=1时,y0,即a+b+c0,则错误;根据对称轴可得:=,则b=3a,根据a0,bb;则正确;根据函数与x轴有两个交点可得:4ac0,则正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5、B【解析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可【详解】解:反比例函数的图象位于一三象限,m0故错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故错误;将A(1,h),B(2,k)代入y,得到hm,2km,m0h
13、k故正确;将P(x,y)代入y得到mxy,将P(x,y)代入y得到mxy,故P(x,y)在图象上,则P(x,y)也在图象上故正确,故选:B【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键6、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考
14、查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比7、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.8、D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标
15、为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1故选:D【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式9、D【解析】根据正比例函数图象与系数的关系列出关于k的不等式k+10,然后解不等式即可【详解】解:正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,k+10,解得,k-1;故选D【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系解答本题注意理解:直线y=kx所在的位置与
16、k的符号有直接的关系k0时,直线必经过一、三象限,y随x的增大而增大;k0时,直线必经过二、四象限,y随x的增大而减小10、C【解析】易证DEFDAB,BEFBCD,根据相似三角形的性质可得= ,=,从而可得+=+=1然后把AB=1,CD=3代入即可求出EF的值【详解】AB、CD、EF都与BD垂直,ABCDEF,DEFDAB,BEFBCD,= ,=,+=+=1.AB=1,CD=3,+=1,EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.11、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD
17、,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点12、C【解析】试题分析:分式有意义,x30,x3;故选C考点:分式有意义的条件二、填空题:(本大题共6个小题,每小题4分,共24分)13、67.1【解析】试题分析:图中是正八边形,各内角度数和=(82)180=1080,HAB=10808=131,BAE=1312=67.1故答案为67.1考点:多边形的内角14、1【解析】先由图形确定:当
18、O、G、D共线时,DG最小;根据正方形的性质证明ABEBCF(SAS),可得AGB=90,利用勾股定理可得OD的长,从而得DG的最小值【详解】在正方形ABCD中,AB=BC,ABC=BCD,在ABE和BCF中,ABEBCF(SAS),BAE=CBF,CBF+ABF=90BAE+ABF=90AGB=90点G在以AB为直径的圆上,由图形可知:当O、G、D在同一直线上时,DG有最小值,如图所示:正方形ABCD,BC=2,AO=1=OGOD=,DG=1,故答案为1.【点睛】本题考查了正方形的性质与全等三角形的判定与性质,解题的关键是熟练的掌握正方形的性质与全等三角形的判定与性质.15、27【解析】试题
19、分析:根据一元二次方程根与系数的关系,可知+=5,=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.16、【解析】先将分式进行通分,即可进行运算.【详解】=-=【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.17、【解析】根据相似三角形的性质,先求出正A2B2C2,正A3B3C3的面积,依此类推AnBnCn的面积是,从而求出第8个正A8B8C8的面积【详解】正A1B1C1的面积是,而A2B2C2与A1B1C1相似,并且相似比是1:2,则
20、面积的比是,则正A2B2C2的面积是;因而正A3B3C3与正A2B2C2的面积的比也是,面积是()2;依此类推AnBnCn与An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1所以第8个正A8B8C8的面积是()7=故答案为【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键18、a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为ab,面积为(ab)1,所以a11abb1(ab)1点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积
21、关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析,.【解析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率20、(1)sA45t45,sB20t;(2)在A出发后小时或小时,两人相距15km【解析】(1)
22、根据函数图象中的数据可以分别求得s与t的函数关系式;(2)根据(1)中的函数解析式可以解答本题【详解】解:(1)设sA与t的函数关系式为sAkt+b,得,即sA与t的函数关系式为sA45t45, 设sB与t的函数关系式为sBat,603a,得a20,即sB与t的函数关系式为sB20t;(2)|45t4520t|15,解得,t1,t2,即在A出发后小时或小时,两人相距15km【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键21、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明ABECAD;(2)由
23、三角形全等可以得出ABE=CAD,由外角与内角的关系就可以得出结论试题解析:(1)ABC为等边三角形,AB=BC=AC,ABC=ACB=BAC=60在ABE和CAD中,AB=CA, BAC=C,AE =CD, ABECAD(SAS),(2)ABECAD,ABE=CAD,BAD+CAD=60,BAD+EBA=60,BFD=ABE+BAD,BFD=6022、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的
24、值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为800.972当购买B种足球越多时,费用越高 此时255425723150(元)23、(1);(2)(,0);(3)1,M(2,3)【解析】试题分析:方法一:(1)该
25、函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BCh表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M方法二:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出ACBC,从而求出圆心坐标(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一
26、半,得出MBC的面积函数,从而求出M点试题解析:解:方法一:(1)将B(1,0)代入抛物线的解析式中,得:0=16a12,即:a=,抛物线的解析式为:(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=1,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0)(3)已求得:B(1,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只
27、有一个交点时,可列方程:x+b=,即:,且=0;11(2b)=0,即b=1;直线l:y=x1所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=2(2+3)+2321=1方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16a12,即:a=,抛物线的解析式为:(2)y=(x1)(x+1),A(1,0),B(1,0)C(0,2),KAC= =2,KBC= =,KACKBC=1,ACBC,ABC是以AB为斜边的直角三角形,ABC的外接圆的圆心是AB的中点,ABC的外接圆的圆心坐标为(,0)(3)过点M作x轴的垂线
28、交BC于H,B(1,0),C(0,2),lBC:y=x2,设H(t,t2),M(t,),SMBC=(HYMY)(BXCX)=(t2)(10)=t2+1t,当t=2时,S有最大值1,M(2,3) 点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键24、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作P
29、MOD交OA于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,OD
30、BE,ODPM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合
31、题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题25、-1【解析】原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值【详解】解:原式2(a3),当a1时,原式1【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键26、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为
32、6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好27、1【解析】试题分析:(1)证明CFDDAE即可解决问题(2)如图2中,作FGAC于G只要证明CFDDAE,推出=,再证明
33、CF=AD即可(3)证明EC=ED即可解决问题试题解析:(1)证明:如图1中,ABC=ACB=60,ABC是等边三角形,BC=BADFAC,BFD=BCA=60,BDF=BAC=60,BDF是等边三角形,BF=BD,CF=AD,CFD=120AEBC,B+DAE=180,DAE=CFD=120CDA=B+BCD=CDE+ADECDE=B=60,FCD=ADE,CFDDAE,DC=DECDE=60,CDE是等边三角形 (2)证明:如图2中,作FGAC于GB=ACB=45,BAC=90,ABC是等腰直角三角形DFAC,BDF=BAC=90,BFD=45,DFC=135AEBC,BAE+B=180,DFC=DAE=135CDA=B+BCD=CDE+ADECDE=B=45,FCD=ADE,CFDDAE,=四边形ADFG是矩形,FC=FG,FG=AD,CF=AD,=(3)解:如图3中,设AC与DE交于点O AEBC,EAO=ACBCDE=ACB,CDO=OAECOD=EOA,CODEOA,=,=COE=DOA,COEDOA,CEO=DAOCED+CDE+DCE=180,BAC+B+ACB=180CDE=B=ACB,EDC=ECD,EC=ED,=1点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题
限制150内