山西省运城市重点中学2023届高三第二次模拟考试数学试卷含解析.doc
《山西省运城市重点中学2023届高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省运城市重点中学2023届高三第二次模拟考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是( )AB9C7D2过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,若,则的最小值是( )A1B2C3D43已知函数若恒成立,则实数的取值范围是( )ABCD4在中,在边上满足,为的中点,则( ).ABCD5第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长
3、方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为( )ABCD6( )ABCD7已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD38 “”是“直线与互相平行”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9若函数在处有极值,则在区间上的最大值为( )AB2C1D310若不相等的非零实数,成等差数列,且,成等比数列,则( )ABC2D11如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是( )A,B存在点,使得平面平面C平面
4、D三棱锥的体积为定值12双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD2二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是_.14若,则_.15已知平面向量,且,则向量与的夹角的大小为_16设,则_,(的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.18(12分)已知函数,为的导数,函数在处取得最小值(1)求证:;(2)若时,恒成立,求的取值
5、范围19(12分)设数列是等比数列,已知, (1)求数列的首项和公比;(2)求数列的通项公式20(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、的表达式;(2)试确定使用哪种运输工具总费用最省.21(12分)已知函数,其中,为自然对数的底数(1)当时,求函数的极值;(2)设函数的导函数为
6、,求证:函数有且仅有一个零点22(10分)在四棱柱中,底面为正方形,平面(1)证明:平面;(2)若,求二面角的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:圆的圆心,半径为,圆的圆心,半径是要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,故的最大值为,故选B考点:圆与圆的位置关系及其判定【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值2、C【解析】设直线AB的方程为,代入得:,由根与系数的
7、关系得,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.3、D【解析】由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解
8、答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.4、B【解析】由,可得,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.5、B【解析】根据比例关系求得会旗中五环所占面积,再计算比值.【详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【点睛】本题考查面积型几何概型的问题求解,属基础题.6、D【解析】利用,根据诱导公式进行化简,可得,然后利用两角差
9、的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.7、B【解析】过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,由抛物线定义知:,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.8、A【解析】利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 运城市 重点中学 2023 届高三 第二次 模拟考试 数学试卷 解析
限制150内