《广东省广州市从化区2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省广州市从化区2022-2023学年中考冲刺卷数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图1,在等边ABC中,D是BC的中点,P为AB 边上
2、的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D2如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长度为( )A2B2CD23(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)4如图是反比例函数(k为常数,k0)的图象,则一次函数的图象大致是( )ABCD5一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )Ax1Bx1Cx3Dx36已知关于x的一元二次方程(a+1)x2+2
3、bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根7已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD8小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种A1B2C3D49如图,三棱柱ABC
4、A1B1C1的侧棱长和底面边长均为2,且侧棱AA1底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )ABCD410如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律则第(6)个图形中面积为1的正方形的个数为( )A20B27C35D40二、填空题(本大题共6个小题,每小题3分,共18分)11将一副三角板如图放置,若,则的大小为_12如图,已知CD是RtABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_cm.13
5、若关于x、y的二元一次方程组的解满足xy0,则m的取值范围是_14如图,已知点A(a,b),0是原点,OA=OA1,OAOA1,则点A1的坐标是 15函数y的自变量x的取值范围为_16如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 三、解答题(共8题,共72分)17(8分)如图,已知抛物线(0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,
6、过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED1:4,求的值. 18(8分)如图,在等腰ABC中,ABAC,以AB为直径的O与BC相交于点D且BD2AD,过点D作DEAC交BA延长线于点E,垂足为点F(1)求tanADF的值;(2)证明:DE是O的切线;(3)若O的半径R5,求EF的长19(8分)某商店经营儿童益智玩具,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元求y与x的函数关系式并直接写出自变量x的
7、取值范围每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?20(8分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H(1)求证:AM2MF.MH(2)若BC2BDDM,求证:AMBADC21(8分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已
8、知时,直线恰好过点 .当时,求关于的函数关系式;点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;直接写出中的最大值是 .22(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.23(12分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24先化简,然后从x的范围内选取一个合适的整数作为x的值代入求值参考答案一、选择题(共10小题,
9、每小题3分,共30分)1、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的
10、关键.2、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30所以EF=OE=23、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A4、B【解析】根据图示知,反比例函数的图象位于第一、三象限,k0,一次函数y=kxk的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,一次函数y=kxk的图象经过第一、三、四象限;故选:B.5、C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x1故选C考点:在数轴上表
11、示不等式的解集6、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根再结合a+1-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根【详解】关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=-(a+1)当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1-(a+1),1和-1不都是关于x的方程x2+bx+
12、a=0的根故选D【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键7、D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM上的点(P)重合,而选项C还原后两个点不能够重合故选D点评:本题考核立意相对较新,考核了学生的空间想象能力8、C
13、【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27x=(27-5y)x,y是非负整数,或或,付款的方式共有3种故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解9、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高侧棱长,把相关数值代入即可求解详解:三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,等边三角形的高CD=,侧(左)视图的面积为2,故选B点睛:本题主要考查的是由三视图
14、判断几何体解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度10、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个故选B考点:规律型:图形变化类.二、填空题(本大题共6个小题,每小题3分,共18分)11、160【解析】试题分析:先求出COA和BOD的度数,代入BOC=COA+AOD+BOD求出即可解:AOD=20,COD=AOB=
15、90,COA=BOD=9020=70,BOC=COA+AOD+BOD=70+20+70=160,故答案为160考点:余角和补角12、1【解析】利用ACDCBD,对应线段成比例就可以求出【详解】CDAB,ACB=90,ACDCBD,CD=1【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键13、m-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y0即可得到关于m的不等式,求得m的范围【详解】解:,+得1x+1y1m+4,则x+ym+1,根据题意得m+10,解得m1故答案是:m1【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m
16、当作已知数表示出x+y的值,再得到关于m的不等式14、(b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设AOX=,A1OD=,A1坐标(x,y)则+=90sin=cos cos=sin sin=cos=同理cos =sin=所以x=b,y=a,故A1坐标为(b,a)【点评】重点理解三角函数的定义和求解方法,主要应用公式sin=cos,cos=sin15、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围16、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60,根据锐角三角函数的
17、定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60,OB=OA=AB=4,OD= OB=2,BD=OBsin60=4=2,B(2,2 ),k=22 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中三、解答题(共8题,共72分)17、(1);(2)点P的坐标为 ;(3).【解析】(1)利用三角形相似可求AOOB,再由一元二次方程根与系数关系求AOOB构造方程求n;(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论
18、点P坐标,分别代入抛物线解析式,求出Q点坐标;(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可【详解】(1)若ABC为直角三角形AOCCOBOC2=AOOB当y=0时,0=x2-x-n由一元二次方程根与系数关系-OAOB=OC2n2=2n解得n=0(舍去)或n=2抛物线解析式为y=;(2)由(1)当=0时解得x1=-1,x2=4OA=1,OB=4B(4,0),C(0,-2)抛物线对称轴为直线x=-设点Q坐标为(,b)由平行四边形性质可知当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)代入y=x
19、2-x-2解得b=,则P点坐标为(,)当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)代入y=x2-x-2解得b=,则P坐标为(-,)综上点P坐标为(,),(-,);(3)设点D坐标为(a,b)AE:ED=1:4则OE=b,OA=aADABAEOBCOOC=nOB=由一元二次方程根与系数关系得, b=a2将点A(-a,0),D(a,a2)代入y=x2-x-n 解得a=6或a=0(舍去)则n= .【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想18、(1);(2)见解析;(3)【解析
20、】(1) AB是O的直径,AB=AC,可得ADB=90,ADF=B,可求得tanADF的值;(2)连接OD,由已知条件证明ACOD,又DEAC,可得DE是O的切线;(3)由AFOD,可得AFEODE,可得后求得EF的长【详解】解:(1)AB是O的直径,ADB=90,AB=AC,BAD=CAD,DEAC,AFD=90,ADF=B,tanADF=tanB=;(2)连接OD,OD=OA,ODA=OAD,OAD=CAD,CAD=ODA,ACOD,DEAC,ODDE,DE是O的切线;(3)设AD=x,则BD=2x,AB=x=10,x=2,AD=2,同理得:AF=2,DF=4,AFOD,AFEODE,=,
21、EF=【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视19、(1)y10x2+130x+2300,0x10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润月销售量即可求出函数关系式(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时
22、,y有最大值,再根据0x10且x为正整数,分别计算出当x=6和x=7时y的值即可【详解】(1)根据题意得:y(30+x20)(23010x)10x2+130x+2300,自变量x的取值范围是:0x10且x为正整数;(2)当y2520时,得10x2+130x+23002520,解得x12,x211(不合题意,舍去) 当x2时,30+x32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元(3)根据题意得:y10x2+130x+230010(x6.5)2+2722.5,a100,当x6.5时,y有最大值为2722.5,0x10且x为正整数,当x6时,30+x36,y2720(元),当x
23、7时,30+x37,y2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程20、(1)证明见解析;(2)证明见解析.【解析】(1)由于ADBC,ABCD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证(2)推出,再结合,可证得答案.【详解】(1)证明:四边形是平行四边形, ,即(2)四边形是平行四边形,又,即,又,, , ,.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的
24、关键是熟练的掌握相似三角形的判定与性质.21、(1);(2);当时,;当时, ;当时, ;.【解析】(1)根据等腰直角三角形的性质即可解决问题;(2)首先求出直线OA、AB、OC、BC的解析式求出R、Q的坐标,利用两点间距离公式即可解决问题;分三种情形分别求解即可解决问题;利用中的函数,利用配方法求出最值即可;【详解】解:(1)由题意是等腰直角三角形, (2) ,线直的解析式为,直线的解析式时,直线恰好过点.,直线的解析式为,直线的解析式为当时,当时,当时, 当时, 当时,, 时, 的最大值为.当时,.时, 的值最大,最大值为.当时,时, 的最大值为,综上所述,最大值为故答案为.【点睛】本题考
25、查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题22、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.23、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键.24、 【解析】根据分式的减法和除法可以化简题目中的式子,然后从x的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题【详解】解:(x+1)=,当x=2时,原式= 【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法
限制150内