《广东省中学山市溪角初级中学2023年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省中学山市溪角初级中学2023年中考一模数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系下列叙述错误的是()AAB两地相距1000千米B两车出发后3小时相遇C动
2、车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地2如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD3 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若150,则2()A20B30C40D504能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da5计算3a2a2的结果是()A4a2 B3a2 C2a2 D36在,,则的值为( )ABCD7一个数和它的倒数相等,则这个数是( )A1B0C1D1和08汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)
3、的函数解析式是s=20t5t2,汽车刹车后停下来前进的距离是()A10m B20m C30m D40m9已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根10如图,点A、B、C、D在O上,AOC120,点B是弧AC的中点,则D的度数是()A60B35C30.5D30二、填空题(本大题共6个小题,每小题3分,共18分)11二次函数中的自变量与函数值的部分对应值如
4、下表:则的解为_12如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,若C=20,则CDA= 13如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 14设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)15抛物线y=(x+1)2 - 2的顶点坐标是 _ 16将直角边长为5cm的等腰直角ABC绕点A逆时针
5、旋转15后,得到ABC,则图中阴影部分的面积是_cm1三、解答题(共8题,共72分)17(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?18(8分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED19(8分)某中学七、八年级各选派10名选手参加知
6、识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a、b的值;(2)直接写出表中的m、n的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由20(8分)在平面直角坐标系中,一次函数的图象与
7、反比例函数(k0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(2,3)求一次函数和反比例函数解析式若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求ABF的面积根据图象,直接写出不等式的解集21(8分)如图,在平面直角坐标系中,O为坐标原点,ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD1设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n)求反比例函数y的表达式;求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l
8、与反比例函数的图象交于点F,求OEF面积的最大值22(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是_经过几秒,点M、点N分别到原点O的距离相等?23(12分)如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?24已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶
9、点B落在CD边上的P点处如图,已知折痕与边BC交于点O,连接AP、OP、OA(1)求证:;(2)若OCP与PDA的面积比为1:4,求边AB的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.2、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的
10、解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度3、C【解析】由两直线平行,同位角相等,可求得3的度数,然后求得2的度数【详
11、解】1=50,3=1=50,2=9050=40.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.4、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的
12、方法”是解答本题的关键.5、C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.6、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 7、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两
13、个数互为倒数.8、B【解析】利用配方法求二次函数最值的方法解答即可【详解】s=20t-5t2=-5(t-2)2+20,汽车刹车后到停下来前进了20m故选B【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键9、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根再结合a+1-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根【详解】关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=-(a+1)
14、当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1-(a+1),1和-1不都是关于x的方程x2+bx+a=0的根故选D【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键10、D【解析】根据圆心角、弧、弦的关系定理得到AOB= AOC,再根据圆周角定理即可解答.【详解】连接OB,点B是弧的中点,AOB AOC60,由圆周角定理得,D AOB30,故选D【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.二、填空
15、题(本大题共6个小题,每小题3分,共18分)11、或【解析】由二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点继而求得答案.【详解】解:二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),此抛物线的对称轴为:直线x=-,此抛物线过点(1,0),此抛物线与x轴的另一个交点为:(-2,0),ax2+bx+c=0的解为:x=-2或1故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题此题难度适中,注意掌握二次函数的对称性是解此题的关键.12、1【解析】连接OD,根据
16、圆的切线定理和等腰三角形的性质可得出答案.【详解】连接OD,则ODC=90,COD=70,OA=OD,ODA=A=COD=35,CDA=CDO+ODA=90+35=1,故答案为1考点:切线的性质13、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以14、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为15、 (-1,-2)【解析】试题分析:因为y=(x+1)22是抛物线的顶点式,根
17、据顶点式的坐标特点可知,顶点坐标为(1,2),故答案为(1,2)考点:二次函数的性质16、【解析】等腰直角ABC绕点A逆时针旋转15后得到ABC,CAC=15,CAB=CABCAC=4515=30,AC=AC=5,阴影部分的面积=5tan305=三、解答题(共8题,共72分)17、 (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3
18、630%120(人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)18、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的
19、圆周角为直角及相似三角形判定等知识的综合运用19、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.【解析】试题分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可试题解析:(1)根据题意得:解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为=20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好考点:1.条形统计图;2.统计表;3.加权平
20、均数;4.中位数;5.方差20、(1)yx+,y;(2)12;(3) x2或0x4.【解析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得【详解】(1)一次函数yx+b的图象与反比例函数y (k0)图象交于A(3,2)、B两点,3(2)+b,k236b,k6一次函数解析式y,反比例函数解析式y.(2)根据题意得: ,解得: ,SABF4(4+2)12(3)由图象可得:x2或0x4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键21、 (
21、1)C(2,2);(2)反比例函数解析式为y;直线CD的解析式为yx+1;(1)m1时,SOEF最大,最大值为.【解析】(1)利用中点坐标公式即可得出结论;(2)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论【详解】(1)点C是OA的中点,A(4,4),O(0,0),C,C(2,2);故答案为(2,2);(2)AD1,D(4,n),A(4,n+1),点C是OA的中点,C(2,),点C,D(4,n)在双曲线上,反比例函数解析式为
22、;由知,n1,C(2,2),D(4,1),设直线CD的解析式为yax+b,直线CD的解析式为yx+1;(1)如图,由(2)知,直线CD的解析式为yx+1,设点E(m,m+1),由(2)知,C(2,2),D(4,1),2m4,EFy轴交双曲线于F,F(m,),EFm+1,SOEF(m+1)m(m2+1m4)(m1)2+,2m4,m1时,SOEF最大,最大值为【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立SOEF与m的函数关系式22、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置
23、即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论试题解析:(1)OB=3OA=1,B对应的数是1(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x点M、点N在点O两侧,则2-3x=2x,解得x=2;点M、点N重合,则,3x-2=2x,解得x=2所以经过2秒或2秒,点M、点N分别到原点O的距离相等23、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC
24、,由A+D=BEC+AEC=180可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=
25、16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180,又BEC+AEC=180,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180,又AEF+BEF=180,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BC
26、AC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9
27、d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点24、 (1)详见解析;(2)10.【解析】只需证明两对对应角分别相等可得两个三角形相似;故.根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长【详解】四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90.由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.APO=90.APD=90CPO=POC.D=C,APD=POC.OCPPDA.OCP与PDA的面积比为1:4,OCPD=OPPA=CPDA=14=12.PD=2OC,PA=2OP,DA=2CP.AD=8,CP=4,BC=8.设OP=x,则OB=x,CO=8x.在PCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42.解得:x=5.AB=AP=2OP=10.边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
限制150内