广东省汕头市重点中学2022-2023学年中考联考数学试题含解析.doc
《广东省汕头市重点中学2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省汕头市重点中学2022-2023学年中考联考数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列大学的校徽图案是轴对称图形的是( )ABCD2下列各式正确的是()A(2018)=2018B|2018|=2018C20180=0D20181=20183如图,ABED,CD=BF,若
2、ABCEDF,则还需要补充的条件可以是()AAC=EFBBC=DFCAB=DEDB=E4某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A中位数是4,众数是4B中位数是3.5,众数是4C平均数是3.5,众数是4D平均数是4,众数是3.55函数与在同一坐标系中的大致图象是( )A、 B、 C、 D、6如图,将ABC绕点C顺时针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D707如图,在中,点D、E、F分别在边、上,且,下列四种说法: 四边形是平行四边
3、形;如果,那么四边形是矩形;如果平分,那么四边形是菱形;如果且,那么四边形是菱形. 其中,正确的有( ) 个A1B2C3D48如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是( ) A16cmB18cmC20cmD21cm9若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a1106的倒数是()ABC6D6111的相反数是()A1B1CD112估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间二、填空题:(本大题共6个小题,每小题4分,共24分)13已知关于x的一元二次方程mx2+5x+m22m=0有
4、一个根为0,则m=_14某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角EAB=53,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m则篮球架横伸臂DG的长约为_m(结果保留一位小数,参考数据:sin53, cos53,tan53)15圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_cm116如图,CD是RtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于_度17如图,在平面直角坐标系中,点P的坐标为(0,4)
5、,直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_18已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的
6、代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由20(6分)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该
7、公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值21(6分)先化简,再求值:,其中x满足x22x2=0.22(8分)已知关于x的方程(a1)x2+2x+a11若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根23(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60方向上,继
8、续航行1小时到达B处,此时测得灯塔P在北偏东30方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?24(10分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值25(10分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_,(2)当点P在线段MN上运动,且使PA2PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)26(12分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器
9、的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?27(12分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n)求直线AB的解析式和点B的坐标;求ABP的面积(用含n的代数式表示);当SABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标参考
10、答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、A【解析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答【详解】选项A,(2018)=2018,故选项A正确;选项B,|2018|=2018,故
11、选项B错误;选项C,20180=1,故选项C错误;选项D,20181= ,故选项D错误故选A【点睛】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.3、C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得B=D,因为,若,则还需要补充的条件可以是:AB=DE,或E=A, EFD=ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.4、A【解析】根据众数和中位数的概念求解【详解】这组数据中4出现的次数最多,众数为4,共有7个人,第4
12、个人的劳动时间为中位数,所以中位数为4,故选A【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错5、D【解析】试题分析:根据一次函数和反比例函数的性质,分k0和k0两种情况讨论:当k0时,一次函数图象过二、四、三象限,反比例函数中,k0,图象分布在一、三象限;当k0时,一次函数过一、三、四象限,反比例函数中,k0,图象分布在二、四象限故选D考点:一次函数和反比例函数的图象6、C【解析】根据旋转的性质
13、和三角形内角和解答即可【详解】将ABC绕点C顺时针旋转90得到EDCDCE=ACB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答7、D【解析】先由两组对边分别平行的四边形为平行四边形,根据DECA,DFBA,得出AEDF为平行四边形,得出正确;当BAC=9
14、0,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出正确;若AD平分BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得EAD=EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出正确;由AB=AC,ADBC,根据等腰三角形的三线合一可得AD平分BAC,同理可得四边形AEDF是菱形,正确,进而得到正确说法的个数【详解】解:DECA,DFBA,四边形AEDF是平行四边形,选项正确;若BAC=90,平行四边形AEDF为矩形,选项正确;若AD平分BAC,EAD=FAD,又DECA,EDA=FAD,EAD=EDA,AE=DE,
15、平行四边形AEDF为菱形,选项正确;若AB=AC,ADBC,AD平分BAC,同理可得平行四边形AEDF为菱形,选项正确,则其中正确的个数有4个故选D【点睛】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键8、C【解析】试题分析:已知,ABE向右平移2cm得到DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm故答案选C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 汕头市 重点中学 2022 2023 学年 中考 联考 数学试题 解析
限制150内