平凉市重点中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc
《平凉市重点中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《平凉市重点中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数的导函数,且满足,若在中,则( )ABCD2我国宋代数学家秦九韶(1202-1261)在数书九章(1247)一书中提
2、出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,求三角形面积,即. 若的面积,则等于( )ABC或D或3若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD4在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是( )A点F的轨迹是一条线段B与BE是异面直线C与不可能平行D三棱锥的体积为定值5已知等差数列的公差为-2,前项和为,若,为某三角形的三边长,且该三角形有一个内角为,则的最大值为( )A5B11C20D256已知函数,若,
3、,则a,b,c的大小关系是( )ABCD7已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题:在抛物线上满足条件的点仅有一个;若是抛物线准线上一动点,则的最小值为;无论过点的直线在什么位置,总有;若点在抛物线准线上的射影为,则三点在同一条直线上.其中所有正确命题的个数为( )A1B2C3D48已知、,则下列是等式成立的必要不充分条件的是( )ABCD9已知数列中,(),则等于( )ABCD210若复数是纯虚数,则( )A3B5CD11已知向量,且,则( )ABC1D212已知抛物线的焦点为,是抛物线上两个不同的点,若,则线
4、段的中点到轴的距离为( )A5B3CD2二、填空题:本题共4小题,每小题5分,共20分。13已知数列an的前n项和为Sn,向量(4,n),(Sn,n+3).若,则数列前2020项和为_14九章算术中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则_,_.15从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为_.16过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为_三、解答题:共70
5、分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,为的中点.(1)求证:平面;(2)求二面角的大小.18(12分)已知定点,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。(1)求曲线的方程;(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。19(12分)已知四棱锥中,底面为等腰梯形,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.20(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为
6、,点在椭圆上,点在直线上的点,且证明:直线与圆相切;求面积的最小值21(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍22(10分)已知正实数满足 .(1)求 的最小值.(2)证明:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据的结构形式,设,求导,则,在上是增函数,再根据在中,得到,利用余弦函数的单调性,得到,再利
7、用的单调性求解.【详解】设,所以 ,因为当时,即,所以,在上是增函数,在中,因为,所以,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.2、C【解析】将,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,代入,得,即 ,解得,当时,由余弦弦定理得: ,.当时,由余弦弦定理得: , .故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.3、C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复
8、数的概念运用.4、C【解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、, ,平面,平面,平面同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点正确对于,平面平面,和平面相交,与是异面直线,正确对于,由知,平面平面,与不可能平行,错误对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题5、D【解析】由公差d=-2可知数列单调递减,
9、再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,中最大,最小,又,为三角形的三边长,且最大内角为, 由余弦定理得,设首项为,即得,所以或,又即,舍去,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.6、D【解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【点睛】本题考查函数的导数与函数单调
10、性的关系,涉及函数单调性的性质,属于基础题7、C【解析】:由抛物线的定义可知,从而可求 的坐标;:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;:计算直线 的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上.【详解】解:对于,设,由抛物线的方程得,则, 故,所以或,所以满足条件的点有二个,故不正确; 对于,不妨设,则关于准线的对称点为, 故,当且仅当三点共线时等号成立,故正确; 对于,由题意知, ,且的斜率不为0,则设方程为:,设与抛物线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平凉市 重点中学 2022 2023 学年 月份 第一次 模拟考试 数学试卷 解析
限制150内