山东省烟台市莱州一中2023年高三第二次联考数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《山东省烟台市莱州一中2023年高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省烟台市莱州一中2023年高三第二次联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,若,则等于( )A3B4C5D62已知函数,若函数的所有零点依次记为,且,则( )ABCD3盒中有6个小球,其中4个
2、白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,4已知展开式中第三项的二项式系数与第四项的二项式系数相等,若,则的值为( )A1B1C8lD815在中,为中点,且,若,则( )ABCD6已知函数,且在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称7已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD8单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规
3、则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A1BCD09点在所在的平面内,且,则( )ABCD10若函数在时取得最小值,则( )ABCD11已知集合U1,2,3,4,5,6,A2,4,B3,4,则( )A3,5,6B1,5,6C2,3,4D1,2,3,5,612已知随机变量的分布列是则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在处的切线方程是_.14已知数列的前项和公式为,则数列的通项公式为_15已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,
4、使得,则椭圆的离心率取值范围为_.16已知,在方向上的投影为,则与的夹角为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由18(12分)的内角、所对的边长分别为、,已知.(1)求的值;(2)若,点是线段的中点,求的面积.19(12分)如图1,已知四边形BCDE为直角梯形,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥()求证;()若平面求二面角的
5、大小;在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值20(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且,求BD的长度.21(12分)百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)年份(届)2014201520162017201841495557638296108106123(1)通过画散点图发现与之间具有线性相关关系,求关于的线
6、性回归方程;(保留两位有效数字)(2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;(3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.参考公式:,参考数据:,22(10分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的
7、。1、C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.2、C【解析】令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.3、C【解析】根据古典概型概率计算公式,计算出概率并
8、求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.4、B【解析】根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.5、B【解析】选取向量,为基底,由向量线性运算,求出,即可求得结果.【
9、详解】, ,.故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.6、B【解析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以 ,即,所以 ,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.7、A【解析】先根据奇函数求出m的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 烟台市 莱州 一中 2023 年高 第二次 联考 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内