山东省莱州市重点中学2023届中考联考数学试卷含解析.doc
《山东省莱州市重点中学2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省莱州市重点中学2023届中考联考数学试卷含解析.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为
2、( )A4B3CD2下列各组单项式中,不是同类项的一组是( )A和B和C和D和33用配方法解方程时,可将方程变形为( )ABCD4下列各式中,不是多项式2x24x+2的因式的是()A2B2(x1)C(x1)2D2(x2)5如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D6下列二次根式中,最简二次根式的是()ABCD7自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表 节约用水量(
3、单位:吨)11.11.411.5家庭数46531这组数据的中位数和众数分别是( )A1.1,1.1;B1.4,1.1;C1.3,1.4;D1.3,1.18如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A8073B8072C8071D80709如图是某公园的一角,AOB=90,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CDOB,则图中休闲区(阴影部分)的面积是()A米2B米2C米2D米210点A(2,5)关于原点对称的点的坐标是 ( )A(2,5) B(2,5) C(2,5) D(5,2
4、)11如图所示是放置在正方形网格中的一个 ,则的值为( )ABCD12不等式42x0的解集在数轴上表示为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=_14已知一组数据1,2,0,1,x,1的平均数是1,则这组数据的中位数为_15关于x的一元二次方程x22x+m10有两个实数根,则m的取值范围是_16如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_17如图
5、,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D18化简:a+1+a(a+1)+a(a+1)2+a(a+1)99=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,
6、请说明理由20(6分)问题背景:如图1,等腰ABC中,ABAC,BAC120,作ADBC于点D,则D为BC的中点,BADBAC60,于是迁移应用:如图2,ABC和ADE都是等腰三角形,BACDAE120,D,E,C三点在同一条直线上,连接BD(1)求证:ADBAEC;(2)若AD2,BD3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,ABC120,在ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF(3)证明:CEF是等边三角形;(4)若AE4,CE1,求BF的长21(6分)如图,AB是O的直径,C是弧AB的中点,弦CD与AB相交于E若AOD4
7、5,求证:CEED;(2)若AEEO,求tanAOD的值22(8分)已知:如图,在半径为2的扇形中,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长23(8分)如图所示:ABC是等腰三角形,ABC=90(1)尺规作图:作线段AB的垂直平分线l,垂足为H(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH24(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a0);这两个图象交于y轴上一
8、点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值25(10分)解方程:2(x-3)=3x(x-3)26(12分)如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想图1中,线段PM与PN的数量关系是 ,位置关系是 ;(2)探究证明把ADE绕点A逆时针方向旋转到图2的位置,连接
9、MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值27(12分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读参考答案一、选择题(本大题共12个小题,每小题4分
10、,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可【详解】设I的边长为x根据题意有 解得或(舍去)故选:C【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键2、A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.3、D【解析】配方法一般步骤:将常数项移到等号右
11、侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.4、D【解析】原式分解因式,判断即可【详解】原式2(x22x+1)2(x1)2。故选:D【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键5、D【解析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键6、C【解析】判定一个二次根
12、式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C考点:最简二次根式7、D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个详解:这组数据的中位数是; 这组数据的众数是1.1 故选D点睛:本题属于基础题,考查了确定一组
13、数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数8、A【解析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=41+1;第2个图案中涂有阴影的小正方形个数为:9=42+1;第3个图案中涂有阴影的小正方形个数为:13=43+1;发现规律:
14、第n个图案中涂有阴影的小正方形个数为:4n+1;第2018个图案中涂有阴影的小正方形个数为:4n+1=42018+1=1故选:A【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.9、C【解析】连接OD,弧AB的半径OA长是6米,C是OA的中点,OC=OA=6=1AOB=90,CDOB,CDOA在RtOCD中,OD=6,OC=1,又,DOC=60(米2)故选C10、B【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】根据中心对称的性质,得点P(2,5)关于原点对称点的点的坐标是(2, 5).故选:B.【点睛】考查关于原点对称的点的坐
15、标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)11、D【解析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA12、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-4,系数化为1,得:x2,故选D【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键
16、,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变二、填空题:(本大题共6个小题,每小题4分,共24分)13、150【解析】根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.【详解】0.5200=100105,a200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.14、2【解析】解:这组数据的平均数为2,有 (2+2+0-2+x+2)=2,可求得x=2将这组数据从小到大重新排列后,观察数据可知最中间
17、的两个数是2与2,其平均数即中位数是(2+2)2=2故答案是:215、m1【解析】根据一元二次方程有实数根,得出0,建立关于m的不等式,求出m的取值范围即可【详解】解:由题意知,44(m1)0,m1,故答案为:m1【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式的关系:0,方程有两个不相等的实数根;0,方程有两个相等的实数根;0,方程没有实数根是本题的关键16、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7=3,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角
18、函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键17、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角,DAO=DEADAODEA即AE=AD故选D18、(a+1)1【解析】原式提取公因式,计算即可得到结果【详解】原式=(a+1)1+a+a(a+1)+a(a+1)2+a(a+1)98,=(a+1)21+a+a(a+1)+a(a+1)2+a(a+1)97,=(a+1)31+a+a(a+1)+a(a+1)2+a(a+1)96,=,=(a+1)1故答案是:(a+1)1【点睛】考查了因式分解-提公
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 莱州市 重点中学 2023 中考 联考 数学试卷 解析
限制150内