山东省青岛十五中学2023届中考试题猜想数学试卷含解析.doc
《山东省青岛十五中学2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛十五中学2023届中考试题猜想数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3
2、颗D4颗2下列各式中正确的是()A =3 B =3 C =3 D3已知二次函数ya(x2)2+c,当xx1时,函数值为y1;当xx2时,函数值为y2,若|x12|x22|,则下列表达式正确的是()Ay1+y20By1y20Ca(y1y2)0Da(y1+y2)04定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等)现从两位数中任取一个,恰好是“下滑数”的概率为( )ABCD5如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+t”,“1时,是正数;当原数的绝对值【解析】分析:首先求得抛物线y=x2+2x的对称轴是x=1,利用二次函数的性质,点
3、M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可详解:抛物线y=x2+2x的对称轴是x=1a=10,抛物线开口向下,123,y1y2 故答案为点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题三、解答题(共8题,共72分)17、见解析【解析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由ACD=90,根据三角形的内角和和等腰三角形的性质得到DCB=A=30,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为所求;(2)CDAC,ACD=90A=B=30,ACB=120DCB=
4、A=30,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作18、(1)点C的坐标为(3,9);滑动的距离为6(1)cm;(2)OC最大值1cm.【解析】试题分析:(1)过点C作y轴的垂线,垂足为D,根据30的直角三角形的性质解答即可;设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CEx
5、轴,CDy轴,垂足分别为E,D,证得ACEBCD,利用相似三角形的性质解答即可试题解析:解:(1)过点C作y轴的垂线,垂足为D,如图1:在RtAOB中,AB=1,OB=6,则BC=6,BAO=30,ABO=60,又CBA=60,CBD=60,BCD=30,BD=3,CD=3,所以点C的坐标为(3,9);设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1cosBAO=1cos30=6AO=6x,BO=6+x,AB=AB=1在AO B中,由勾股定理得,(6x)2+(6+x)2=12,解得:x=6(1),滑动的距离为6(1);(2)设点C的坐标为(x,y),过C作CEx轴
6、,CDy轴,垂足分别为E,D,如图3:则OE=x,OD=y,ACE+BCE=90,DCB+BCE=90,ACE=DCB,又AEC=BDC=90,ACEBCD,即,y=x,OC2=x2+y2=x2+(x)2=4x2,当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当CB旋转到与y轴垂直时此时OC=1,故答案为1考点:相似三角形综合题19、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再
7、证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45
8、,又PDAB,PDE是等腰直角三角形,PE越大,PDE的周长越大设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1设P点的坐标为(x,x22x+1),E点的坐标为(x,x+1),则PE=(x22x+1)(x+1)=x21x=(x+)2+,所以当x=时,PE最大,PDE的周长也最大当x=时,x22x+1=()22()+1=,即点P坐标为(,)时,PDE的周长最大【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中20、(1)a=7,b=7.5,c=4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 青岛 十五 中学 2023 中考 试题 猜想 数学试卷 解析
限制150内