山东省邹城市第二中学2022-2023学年高三下学期联合考试数学试题含解析.doc
《山东省邹城市第二中学2022-2023学年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省邹城市第二中学2022-2023学年高三下学期联合考试数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D112为虚数单位,则的虚部为( )ABCD3某校8位学生的本
2、次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A方差B中位数C众数D平均数4已知直线yk(x1)与抛物线C:y24x交于A,B两点,直线y2k(x2)与抛物线D:y28x交于M,N两点,设|AB|2|MN|,则( )A16B16C120D125已知i为虚数单位,则( )ABCD6中,点在边上,平分,若,则( )ABCD7如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等8对两个变量进行回
3、归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD9已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )ABCD410已知三棱锥且平面,其外接球体积为( )ABCD11已知双曲线的左、右焦点分别为,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),则双曲线C的渐近线方程为( )ABCD12某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中
4、90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多二、填空题:本题共4小题,每小题5分,共20分。13已知向量,满足,则向量在的夹角为_.14已知F为抛物线C:x28y的焦点,P为C上一点,M(4,3),则PMF周长的最小值是_.15在中,角,所对的边分别边,且,设角的角平分线交于点,则的值最小时,_.16从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为_.(用数字作答)三、解答题:共70分。解答应写出文字说明、
5、证明过程或演算步骤。17(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.18(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.19(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.()求椭圆E的方程;()若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.20(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1
6、978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298121(12分)已知,分别为内角,的对边,且.(1)证明:;(2)若的面积,求角.22(10分)某单位准备购买
7、三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个
8、月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.2、C【解析】利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题
9、为基础题,也是易错题.3、A【解析】通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.4、D【解析】分别联立直线与抛物线的方程,利用韦达定理,可得,然后计算,可得结果.【详解】设, 联立则,因为直线经过C的焦点, 所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。5、A【解析】根据复数乘除运算法则,
10、即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.6、B【解析】由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,.故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.7、B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于
11、基础题8、D【解析】作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好9、D【解析】如图所示:过点作垂直准线于,交轴于,则,设,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10、A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 邹城市 第二 中学 2022 2023 学年 下学 联合 考试 数学试题 解析
限制150内