《山东省郓城第一中学2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省郓城第一中学2023年中考猜题数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1sin60的值为()ABCD2如图,CD是O的弦,O是圆心,把O的劣弧沿着CD对折,A是对折后劣弧上的一点,CAD=100,则B的度数是() A100B80C60D503有一组数据:3,4,
2、5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,64方程x2+2x3=0的解是()Ax1=1,x2=3 Bx1=1,x2=3Cx1=1,x2=3 Dx1=1,x2=35 (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A2BC5D6如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则EBF的周长是()cmA7B11C13D167如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何
3、体的左视图的面积为()A5B4C3D28若不等式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a69如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD102017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里数字5550用科学记数法表示为( )A0.555104B5.55103C5.55104D55.510311甲、乙两超市在1月至8月间的盈利情
4、况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市12估计的值在( )A2和3之间B3和4之间C4和5之间D5和6之间二、填空题:(本大题共6个小题,每小题4分,共24分)13某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李14对于函数,若x2,则y_3(填“”或“”)15分解因式:x3y2x2y+xy=_16如图,矩形ABCD中,E为BC的中点,将ABE沿直线AE折叠时点B落在点F处,连接FC,若DAF18,则DC
5、F_度17如图,在ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则ACD的周长为 cm18如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图,在中,是边上的中线,若,求证:.如图,已知矩形,如果在
6、矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.20(6分)如图,在ABC中,ACB=90,O是AB上一点,以OA为半径的O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F(1)求证:AE=AF;(2)若DE=3,sinBDE=,求AC的长21(6分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(1,4).求直线与双曲线的表达式;过点B作BCx轴于点C,若点P在双曲线上,且PAC的面积为4,求点P的坐标.22(8分)如图,AB是O的直径,点C在AB的延
7、长线上,CD与O相切于点D,CEAD,交AD的延长线于点E(1)求证:BDC=A;(2)若CE=4,DE=2,求AD的长23(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55方向行驶4千米至B地,再沿北偏东35方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan551.4,tan350.7,sin550.8)24(10分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径25(10分)如图,四边形ABCD
8、内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值26(12分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 27(12分)在一个不
9、透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:sin60=故选B2、B【解析】试题分析:如图,翻折ACD,点A落在A处,可知A=A=100,然后由圆内接四边形可知A+B=180,解得B=80.故选:B3、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的
10、数是5,平均数是:(3+4+5+6+6)5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数4、B【解析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程【详解】x2+2x-3=0,即(x+3)(x-1)=0,x1=1,x2=3故选:B【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法本题运用的是因式分解法5、B【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右
11、第5个数是=. 故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力6、C【解析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案【详解】将线段DC沿着CB的方向平移7cm得到线段EF,EF=DC=4cm,FC=7cm,AB=AC,BC=12cm,B=C,BF=5cm,B=BFE,BE=EF=4cm,EBF的周长为:4+4+5=13(cm)故选C【点睛】此题主要考查了平移的性质,根据题意得出BE的长是解题关键7、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左
12、面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.8、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大
13、小中间找,大大小小解不了9、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键10、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5550=
14、5.551故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值11、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上
15、升或下降来表示统计数量增减变化12、D【解析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:,故选择D.【点睛】本题考查了二次根式的相关定义.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用
16、待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键14、【解析】根据反比例函数的性质即可解答.【详解】当x2时,k6时,y随x的增大而减小x2时,y3故答案为:【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .15、xy(x1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=xy(x1-1x+1)=xy(x-1)1故答案为:xy(x-1)1【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键16、1【解析】由折叠的性质得:FEBE,FAEB
17、AE,AEBAEF,求出BAEFAE1,由直角三角形的性质得出AEFAEB54,求出CEF72,求出FECE,由等腰三角形的性质求出ECF54,即可得出DCF的度数【详解】解:四边形ABCD是矩形,BADBBCD90,由折叠的性质得:FEBE,FAEBAE,AEBAEF,DAF18,BAEFAE(9018)1,AEFAEB90154,CEF18025472,E为BC的中点,BECE,FECE,ECF(18072)54,DCF90ECF1.故答案为1【点睛】本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出ECF的度数是解题的关键17、8【解
18、析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,ACD的周长=AD+CD+AC=AB+AC,解答出即可解:DE是BC的垂直平分线,BD=CD,AB=AD+BD=AD+CD,ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等18、【解析】因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明
19、过程或演算步骤19、(1)详见解析;(2)详见解析;(3)【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;(3)先判断出ABE是底角是30的等腰三角形,即可构造直角三角形即可得出结论【详解】(1)AD=BD,B=BAD,AD=CD,C=CAD,在ABC中,B+C+BAC=180,B+C+BAD+CAD=B+C+B+C=180B+C=90,BAC=90,(2)如图,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角
20、形的性质和判定,含30角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出B=BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出ABE是底角为30的等腰三角形,进而构造直角三角形20、(1)证明见解析;(2)1【解析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可【详解】(1)连接OD,OD=OE,ODE=OED直线BC为O的切线,ODBCODB=90ACB=90,ODACODE=FOED=FAE=AF;(2)连接AD,AE是O的直径,ADE=90,AE=AF,DF=DE=3,ACB=90,DAF+F=90,CDF+F=90,
21、DAF=CDF=BDE,在RtADF中,=sinDAF=sinBDE=,AF=3DF=9,在RtCDF中,=sinCDF=sinBDE=,CF=DF=1,AC=AFCF=1【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.21、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或【解析】分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;(2)根据直线解析式求得点A坐标,由SACPAC|yP|4求得点P的纵坐标,继而可得答案详解:(1)直线与双曲线 ()都经过点B(1,4),直
22、线的表达式为,双曲线的表达方式为. (2)由题意,得点C的坐标为C(1,0),直线与x轴交于点A(3,0),点P在双曲线上,点P的坐标为或.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键22、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是O切线,得到ODC=90,根据AB为O的直径,得到ADB=90,等量代换得到BDC=ADO,根据等腰直角三角形的性质得到ADO=A,即可得到结论;(2)根据垂直的定义得到E=ADB=90,根据平行线的性质得到DCE=BDC,根据相似三角形的性质得到,解方程即可得到结论试题解
23、析:(1)连接OD, CD是O切线, ODC=90, 即ODB+BDC=90,AB为O的直径, ADB=90, 即ODB+ADO=90, BDC=ADO,OA=OD, ADO=A, BDC=A;(2)CEAE, E=ADB=90, DBEC, DCE=BDC, BDC=A, A=DCE,E=E, AECCED, , EC2=DEAE, 11=2(2+AD), AD=1考点:(1)切线的性质;(2)相似三角形的判定与性质23、B、C两地的距离大约是6千米【解析】过B作BDAC于点D,在直角ABD中利用三角函数求得BD的长,然后在直角BCD中利用三角函数求得BC的长【详解】解:过B作于点D在中,千
24、米,中,千米,千米答:B、C两地的距离大约是6千米【点睛】此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解24、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90,AC9,AH3,设O的半径为r,在RtBOH中,BH2+OH2OB2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角
25、函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题25、(1)90;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90,即可判定DF是O的切线;(3)根据已知条件易证CDEADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90,EDC=90;(1)证明:连接DO,EDC=90,F是EC的中点,DF=FC,FDC=FCD,OD=OC,OCD=ODC,OC
26、F=90,ODF=ODC+FDC=OCD+DCF=90,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90,DCA+DCE=90,DCA=E,又ADC=CDE=90,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=ADDE,期(1x)1AD1=ADx,整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=26、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,即可BA=CA,BAD=
27、CAE,DA=EA,进而得到ABDACE,可得出BD=CE;(2)分两种情况:依据PDA=AEC,PCD=ACE,可得PCDACE,即可得到=,进而得到PD=;依据ABD=PBE,BAD=BPE=90,可得BADBPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值详解:(1)BD,CE的关系是相等理由:ABC和ADE是有公共顶点的等腰
28、直角三角形,BAC=DAE=90,BA=CA,BAD=CAE,DA=EA,ABDACE,BD=CE;故答案为相等(2)作出旋转后的图形,若点C在AD上,如图2所示:EAC=90,CE=,PDA=AEC,PCD=ACE,PCDACE,PD=;若点B在AE上,如图2所示:BAD=90,RtABD中,BD=,BE=AEAB=2,ABD=PBE,BAD=BPE=90,BADBPE,即,解得PB=,PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大如图3所示,分两种情况讨论:在RtPED中
29、,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小当小三角形旋转到图中ACB的位置时,在RtACE中,CE=4,在RtDAE中,DE=,四边形ACPB是正方形,PC=AB=3,PE=3+4=1,在RtPDE中,PD=,即旋转过程中线段PD的最小值为1;当小三角形旋转到图中ABC时,可得DP为最大值,此时,DP=4+3=1,即旋转过程中线段PD的最大值为1故答案为1,1点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题27、 (1);(2).【解析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解【详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;故答案为:;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率
限制150内