山东省青岛三中2023届高考冲刺模拟数学试题含解析.doc
《山东省青岛三中2023届高考冲刺模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛三中2023届高考冲刺模拟数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列四个图象可能是函数图象的是( )ABCD2若实数满足的约束条件,则的取值范围是( )ABCD3曲线在点处的切线方程为( )ABCD4设函数,若函数有三个零点,则()A12B11C6D35
2、已知平面向量,则实数x的值等于( )A6B1CD6如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD7已知正项等比数列的前项和为,且,则公比的值为()AB或CD8设集合,则集合ABCD9小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD10复数的虚部为()A1B3C1D211已知定义在上的奇函数,其导函数为,当时,恒有则不等式的解集为( )ABC或D或12已知复数z满足iz2+
3、i,则z的共轭复数是()A12iB1+2iC12iD1+2i二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是_.14有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是_15已知向量,若向量与向量平行,则实数_16已知是定义在上的偶函数,其导函数为若时,则不等式的解集是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,分别为内角,
4、的对边,且.(1)证明:;(2)若的面积,求角.18(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:,其中均为常数,为自然对数的底数现该公司收集了近12年的年研发资金投入量和年销售额的数据,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值令,经计算得如下数据:(1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01);(ii)若下一年销售额需达到90亿元,预
5、测下一年的研发资金投入量是多少亿元? 附:相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; 参考数据:,19(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.20(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请
6、说理由.21(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)22(10分)如图,四棱锥VABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO平面ABCD,E是棱VC的中点(1)求证:VA平面BDE;(2)求证:平面VAC平面BDE参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A
7、、D,再根据时函数值,排除B,即可得解.【详解】的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.2、B【解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B
8、.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.3、A【解析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.4、B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,
9、则关于的方程有四个或五个根),由,可得的值分别为,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.5、A【解析】根据向量平行的坐标表示即可求解.【详解】,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.6、C【解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.7、C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 青岛 2023 高考 冲刺 模拟 数学试题 解析
限制150内