山东省烟台市莱山区重点中学2022-2023学年中考二模数学试题含解析.doc
《山东省烟台市莱山区重点中学2022-2023学年中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省烟台市莱山区重点中学2022-2023学年中考二模数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图案是轴对称图形的是()ABCD2如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的
2、坐标为()A()B()C()D()3下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab22ab=3b4下列计算正确的是()Aa2a3a6B(a2)3a6Ca6a2a4Da5+a5a105下列说法正确的是()A某工厂质检员检测某批灯泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是6如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值
3、为( )A2BCD7若等式(-5)5=1成立,则内的运算符号为( )A+BCD8如图,A、B为O上两点,D为弧AB的中点,C在弧AD上,且ACB=120,DEBC于E,若AC=DE,则的值为( )A3BCD9下列函数是二次函数的是( )ABCD10函数的自变量x的取值范围是( )Ax1Bx1Cx1Dx1二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .12如图,PA,PB分别为的切线,切点分别为A、B,则_13如图,若正五边形和正六边形有
4、一边重合,则BAC_14如图,点A的坐标是(2,0),ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_15如图,四边形ABCD内接于O,AB是O的直径,过点C作O的切线交AB的延长线于点P,若P40,则ADC_16两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_17因式分解: 三、解答题(共7小题,满分69分)18(10分)计算:()2+(2)0+|2|19(5分)如图,已知抛物线(0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物
5、线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED1:4,求的值. 20(8分)如图,在ABC中,点D在边BC上,联结AD,ADB=CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DEDF(1)求证:BFDCAD;(2)求证:BFDE=ABAD21(10分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率
6、提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?22(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23(12分)
7、如图1,在RtABC中,ABC=90,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长24(14分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架A
8、F的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:A此图形不是轴对称图形,不合题意;B此图形不是轴对称图形,不合题意;C此图形是轴对称图形,符合题意;D此图形不是轴对称图形,不合题意故选C2、A【解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=90,1=2=
9、1,则A1OMOC1N,OA=5,OC=1,OA1=5,A1M=1,OM=4,设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,)故选A【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键3、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4、B【解析】根据同底
10、数幂乘法、幂的乘方的运算性质计算后利用排除法求解【详解】A、a2a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错5、B【解析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2
11、=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.6、B【解析】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点
12、是锐角三角函数的定义,解题关键是熟记三角函数的定义.7、D【解析】根据有理数的除法可以解答本题【详解】解:(5)5=1,等式(5)5=1成立,则内的运算符号为,故选D【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法8、C【解析】连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则,根据全等三角形的性质可得: 即 根据等腰三角形的性质可得: 设 则即可求出的值.【详解】如图:连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF, 则, 即 根据等腰三角形的性质可得: 设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 烟台市 山区 重点中学 2022 2023 学年 中考 数学试题 解析
限制150内