山西省忻州市定襄中学2023届初中数学毕业考试模拟冲刺卷含解析.doc
《山西省忻州市定襄中学2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省忻州市定襄中学2023届初中数学毕业考试模拟冲刺卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列命题中真命题是( )A若a2=b2,则a=b B4的平方根是2C两个锐角之和一定是钝角 D相等的两个角是对顶角2计算4(9)的结果等于A32B32C36D363如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分
2、别是( )A13;13B14;10C14;13D13;144如图,若ABC内接于半径为R的O,且A60,连接OB、OC,则边BC的长为()ABCD5下面四个几何体中,左视图是四边形的几何体共有()A1个B2个C3个D4个6单项式2a3b的次数是()A2B3C4D57如图,双曲线y=(k0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )A1B2C3D68某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( )ABCD9下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD10如图,在
3、正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D5二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,;按此做法继续下去,则点M2000的坐标为_12方程的解是 13如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得MN200m,则A,B间的距离为
4、_m14在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心已知:求作:所在圆的圆心曈曈的作法如下:如图2,(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心老师说:“曈曈的作法正确”请你回答:曈曈的作图依据是_15已知圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于_16已知整数k5,若ABC的边长均满足关于x的方程,则ABC的周长是 三、解答题(共8题,共72分)17(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角=37,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相
5、关数据如图2.(参考数据:sin37=,cos37=,tan37=)(1)求把手端点A到BD的距离;(2)求CH的长.18(8分)如图,在ABCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60,CF=2,求AF的长19(8分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率20(8分)我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最
6、大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?21(8分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明22(10分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再
7、记下小球上的数字(1)用列表法或树状图法写出所有可能出现的结果;(2)求两次取出的小球上的数字之和为奇数的概率P23(12分)高考英语听力测试期间,需要杜绝考点周围的噪音如图,点A是某市一高考考点,在位于A考点南偏西15方向距离125米的点处有一消防队在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75方向的F点处突发火灾,消防队必须立即赶往救火已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶试问:消防车是否需要改道行驶?说明理由.(取1.732)24如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2
8、,3、1(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项【详解】A、若a2=b2,则a=b,错误,是假命题;B、4的平方根是2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶
9、角,故错误,是假命题.故选B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大2、D【解析】根据有理数的乘法法则进行计算即可.【详解】 故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.3、C【解析】根据统计图,利用众数与中位数的概念即可得出答案【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键4
10、、D【解析】延长BO交圆于D,连接CD,则BCD=90,D=A=60;又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交O于D,连接CD,则BCD=90,D=A=60,CBD=30,BD=2R,DC=R,BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.5、B【解析】简单几何体的三视图【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个故选B6、C【解析】分析:根据单项式的性质即
11、可求出答案详解:该单项式的次数为:3+1=4故选C点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型7、B【解析】先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k0),C(c,0),则B(c,b),E(c, ),设D(x,y),D和E都在反比例函数图象上,xy=k, 即 ,四边形ODBC的面积为3, bc=4 k0 解得k=2,故答案为:B.【点睛】本题考查了反比例函数中比例系数k的几何意义,涉及到矩
12、形的性质及用待定系数法求反比例函数的解析式,难度适中.8、B【解析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1x),2016年的绿化面积为300(1x)(1x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1x)2363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.9、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 忻州市 定襄 中学 2023 初中 数学 毕业 考试 模拟 冲刺 解析
限制150内