山西省朔州市第一中学2022-2023学年高考数学全真模拟密押卷含解析.doc
《山西省朔州市第一中学2022-2023学年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省朔州市第一中学2022-2023学年高考数学全真模拟密押卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是( ).ABCD2设全集集合,则( )ABCD3如图,在中,且,则( )A1BCD4若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD5已知命题p:直线ab,且b平面,则a;命
2、题q:直线l平面,任意直线m,则lm.下列命题为真命题的是( )ApqBp(非q)C(非p)qDp(非q)6函数f(x)sin(wx)(w0,)的最小正周期是,若将该函数的图象向右平移个单位后得到的函数图象关于直线x对称,则函数f(x)的解析式为( )Af(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2x)Df(x)sin(2x)7某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )ABCD8国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中
3、错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%9已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)10已知复数满足(其中为的共轭复数),则的值为( )A1B2CD112019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科
4、技大学联合组建若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:甲不是军事科学院的;来自军事科学院的不是博士;乙不是军事科学院的;乙不是博士学位;国防科技大学的是研究生则丙是来自哪个院校的,学位是什么( )A国防大学,研究生B国防大学,博士C军事科学院,学士D国防科技大学,研究生12已知双曲线的一条渐近线倾斜角为,则( )A3BCD二、填空题:本题共4小题,每小题5分,共20分。13函数在的零点个数为_.14已知向量满足,且,则 _15如图,在等腰三角形中,已知,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_. 16在中,则_三、解答题:共70分。解
5、答应写出文字说明、证明过程或演算步骤。17(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.18(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视
6、为概率,回答下列两个问题:求乙公司送餐员日工资的分布列和数学期望;小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.19(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,且,求的最大值.20(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和
7、数学期望.21(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.22(10分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出在的解析式,作出函数图象,数形结合即可得到答案.【详解】当时,又,所以至少小于7,此时,令,得,解得或,结合图象,故.故选:B.【点睛】本题考查不等式恒成立求参数的范围,考查学生数形结合的思想,是一道中档题.2
8、、A【解析】先求出,再与集合N求交集.【详解】由已知,又,所以.故选:A.【点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.3、C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.4、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题5、C【
9、解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.6、D【解析】由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条件的的值,即可求得答案.
10、【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.7、C【解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外
11、接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.8、D【解析】根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 朔州市 第一 中学 2022 2023 学年 高考 数学 模拟 密押卷含 解析
限制150内