《山东省青岛市新海岸新区信阳中学2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市新海岸新区信阳中学2023年中考猜题数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等2某班
2、将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A25本B20本C15本D10本3对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小4如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD5已知方程的两个解分别为、,则的值为()ABC7D36如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )ABCD7a的倒数是3,则a的值是()ABC3D38到三角形三个顶点的距离相等的点是三角形(
3、)的交点A三个内角平分线B三边垂直平分线C三条中线D三条高9把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)2110最小的正整数是()A0 B1 C1 D不存在11四组数中:1和1;1和1;0和0;和1,互为倒数的是()ABCD12不等式组 中两个不等式的解集,在数轴上表示正确的是 ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2)点F(x,0)在边AB上运动,若过点E、F的直
4、线将矩形ABCD的周长分成2:1两部分,则x的值为_14对于任意实数m、n,定义一种运算mn=mnmn+3,等式的右边是通常的加减和乘法运算,例如:35=3535+3=1请根据上述定义解决问题:若a2x7,且解集中有两个整数解,则a的取值范围是_15如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为_.16如果关于x的方程(m为常数)有两个相等实数根,那么m_17如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_18如图,在ABC中,ACB
5、=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是: ;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 20(6分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风
6、大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值21(6分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式
7、;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由22(8分)计算:|1|+(1)2018tan6023(8分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_24(10分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.69.67.
8、89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙_(说明:月销售额在8.0万元及以上可以获得奖金,7.07.9万元为良好,6.06.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7(1)估计乙业务员能获得奖金的月份有_个;(2)可以推断出_业务员的销售业绩好,理由为_(至少从两个不同的角度
9、说明推断的合理性)25(10分)计算:(2018)04sin45+2126(12分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_27(12分)如图,已知AB是O上的点,C是O上的点,点D在AB的延长线上,BCD=BAC求证:CD是O的切线;若D=30,BD=2,求图中阴影部分的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的
10、平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D2、C【解析】设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可【详解】解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本故选C【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的
11、关键3、C【解析】直接利用反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键4、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对
12、称图形5、D【解析】由根与系数的关系得出x1x25,x1x22,将其代入x1x2x1x2中即可得出结论【详解】解:方程x25x20的两个解分别为x1,x2,x1x25,x1x22,x1x2x1x2521故选D【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1x25,x1x22本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键6、B【解析】根据旋转的性质可得ACAC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,最后根据旋转的性质可得BABC【详
13、解】解:RtABC绕直角顶点C顺时针旋转90得到ABC,ACAC,ACA是等腰直角三角形,CAA45,ABC1CAA204565,BABC65故选B【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键7、A【解析】根据倒数的定义进行解答即可【详解】a的倒数是3,3a=1,解得:a=故选A【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数8、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点故选B点评:本题考查了线段垂直
14、平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键9、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点10、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答11、C【解析】根据倒数的定义,分别进行判断即可得出答案【详解】1
15、和1;11=1,故此选项正确;-1和1;-11=-1,故此选项错误;0和0;00=0,故此选项错误;和1,-(-1)=1,故此选项正确;互为倒数的是:,故选C【点睛】此题主要考查了倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数12、B【解析】由得,x3,由得,x1,所以不等式组的解集为:1x3,在数轴上表示为:,故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、或【解析】试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1)则AF+AD+DP=3+x, CP+BC+BF=3x,由题意可得:3+x=2(3x),解得:x=由对称性可求当点
16、F在OA上时,x=,故满足题意的x的值为或故答案是或【点睛】考点:动点问题14、【解析】解:根据题意得:2x=2x2x+3=x+1,ax+17,即a1x6解集中有两个整数解,a的范围为,故答案为【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键15、【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为4dm,圆柱高为2dm,AB=2dm,BC=BC=2dm,AC2=22+22=8,AC=2dm这圈金属丝的周长
17、最小为2AC=4dm故答案为:4dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键16、1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值解答:解:x的方程x2-2x+m=0(m为常数)有两个相等实数根=b2-4ac=(-2)2-41?m=04-4m=0m=1故答案为117、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理
18、即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合18、2【解析】由tanCBD= 设
19、CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1),1;(2
20、)与x轴交于(1,0),与y轴没交点;(3)答案不唯一,如:y=+1.【解析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(1,0),与y轴没交点,故答案为:与x轴交于(1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=+1, 答案不唯一,故答案为:y=+1【点睛】本题考查了函数图像的平移变换,函数自
21、变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键20、(1)60;960;图见解析;(2)y1=60x240(4x20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,
22、则速度为2404=60米/分,小新按此速度再走16分钟到达书店,则a=1660=960米,小华到书店的时间为96040=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4x20时,设所求函数关系式为y1=kx+b(k0),将点(4,0),(20,960)代入得:,解得:,y1=60x240(4x20时)(3)由图可知,小新到小华家之前的函数关系式为:y=2406x,当两人分别在小华家两侧时,若两人到小华家距离相同,则2406x=40x,解得:x=2.4;当小新经过小华家并追上小华时,两人到小华家距离相同,则60x240=40x,解得:x=12;故两人离小华家的距
23、离相等时,x的值为2.4或12.21、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用
24、等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E
25、的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标22、1【解析
26、】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值【详解】|1|+(1)2118tan61=1+1=1【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.23、(1)x1;(1)x1;(3)答案见解析;(4)1x1【解析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集【详解】解:(1)解不等式,得x1;(1)解不等式,得 x1;(3)把不等式和的解集在数轴上表示出来:(4)原不等式组的解集为:1x1【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小
27、取小;大小小大中间找;大大小小找不到是解题的关键24、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【解析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量x人员4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙013024(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多故答案为0,1,3,0,2,4;
28、6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.25、.【解析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式14+212+2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方26、 【解析】解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【详解】,得 若b2a, 即a=2,3,4,5,6 b=
29、4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b2a, 符合条件的数组有(1,1)共有1个,概率p=.故答案为:.【点睛】本题主要考查了古典概率及其概率计算公式的应用.27、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证BCD=OCA,由于AB是直径,所以ACB=90,所以OCA+OCB=BCD+OCB=90,CD是O的切线;(2)设O的半径为r,AB=2r,由于D=30,OCD=90,所以可求出r=2,AOC=120,BC=2,由勾股定理可知:AC=2,分别计算OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,OA=OC,BAC=OCA,BCD=BAC,BCD=OCA,AB是直径,ACB=90,OCA+OCB=BCD+OCB=90OCD=90OC是半径,CD是O的切线(2)设O的半径为r,AB=2r,D=30,OCD=90,OD=2r,COB=60r+2=2r,r=2,AOC=120BC=2,由勾股定理可知:AC=2,易求SAOC=21=S扇形OAC=,阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.
限制150内