山西省临汾平阳重点达标名校2022-2023学年中考数学模试卷含解析.doc
《山西省临汾平阳重点达标名校2022-2023学年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省临汾平阳重点达标名校2022-2023学年中考数学模试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:92如图是反比例函数(k为常数,k0)的图象,则一次函数的图象大致是( )ABCD3如图
2、,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )A
3、0.33B0.34C0.20D0.354如图,将ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若ACB=30,则DAC的度数是( )ABCD5衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为ABCD6若分式有意义,则x的取值范围是( )Ax3Bx3Cx3Dx=37如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交
4、于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:258实数a在数轴上的位置如图所示,则化简后为()A7B7C2a15D无法确定9在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D610在数轴上表示不等式组的解集,正确的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了_结果保留根号12若使代数式有意义,则x的取值范围是_13如图,已知圆锥的母
5、线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 14已知ABC中,BC=4,AB=2AC,则ABC面积的最大值为_15写出一个比大且比小的有理数:_16如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为_17如图,在RtABC中,B=90,A=45,BC=4,以BC为直径的O与AC相交于点O,则阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随
6、机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)本次调查学生共 人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率19(5分)如图,在ABC中,AB=AC,以AB为直径作O交BC于点D,过点D作O的切线DE交AC于点E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长20(8分)如图,将AB
7、C放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上(I)计算ABC的边AC的长为_(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_(不要求证明)21(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人
8、;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率22(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度1:3,AD9米,点C在DE上,CD0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米)如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1
9、米,参考数据:1.41,1.73,3.16)23(12分)解方程:1+24(14分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可
10、得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心2、B【解析】根据图示知,反比例函数的图象位于第一、三象限,k0,一次函数y=kxk的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,一次函数y=kxk的图象经过第一、三、四象限;故选:B.3、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
11、【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确4、D【解析】由题意知:ABCDEC,ACB=DCE=30,AC=DC,DAC=(180DCA)2=(18030)2=75故选D【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等5、A【解析】根据题
12、意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选:【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系6、C【解析】试题分析:分式有意义,x30,x3;故选C考点:分式有意义的条件7、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 临汾 平阳 重点 达标 名校 2022 2023 学年 中考 数学 试卷 解析
限制150内