山东省青岛市城阳区2022-2023学年高三第五次模拟考试数学试卷含解析.doc
《山东省青岛市城阳区2022-2023学年高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市城阳区2022-2023学年高三第五次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB所在直线旋转一周后形成的几何体的表面积为( )ABCD2已知函数,则,的大小关系为( )ABCD3函数y=sin2x的图象可能是ABCD4 “”是“”的( )A充分不必要条件B必
2、要不充分条件C充要条件D既不充分也不必要条件5已知三棱锥且平面,其外接球体积为( )ABCD6若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A B C D7命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD8刘徽是我国魏晋时期伟大的数学家,他在九章算术中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”
3、,则在五边形内随机取一个点,此点取自朱方的概率为( )ABCD9已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD10已知幂函数的图象过点,且,则,的大小关系为( )ABCD11已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为( )AB3CD12从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,且满足(其中为虚数单位),则_.14函数的最小正周期为_;若函数在区间上单
4、调递增,则的最大值为_.15如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_16在中,角A,B,C的对边分别为a,b,c,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,内角,所对的边分别是,()求的值;()求的值18(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由19(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处
5、的切线与轴垂直?若存在,求出的值;若不存在,说明理由.20(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).21(12分)已知函数和的图象关于原点对称,且(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围22(10分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,
6、圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.2、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.3、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛
7、:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复4、B【解析】或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.5、A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,
8、则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.6、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运
9、用,以及分析问题 解决问题的能力。7、A【解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.8、C【解析】首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 青岛市 城阳区 2022 2023 学年 第五 模拟考试 数学试卷 解析
限制150内