山西省吕梁市孝义市2023年高考数学全真模拟密押卷含解析.doc
《山西省吕梁市孝义市2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《山西省吕梁市孝义市2023年高考数学全真模拟密押卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,则不等式的解集是( )ABCD2设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD3已知(i为虚数单位,),则ab等于( )A2B-2CD4若函数在处有极值,则在区间
2、上的最大值为( )AB2C1D35若单位向量,夹角为,且,则实数( )A1B2C0或1D2或16复数满足,则复数等于()ABC2D-27在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD8如图,在中,且,则( )A1BCD9在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD10已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为( )ABCD11已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC
3、2D212存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数,则使得不等式成立的的取值范围为_.14设的内角的对边分别为,若,则_15已知是夹角为的两个单位向量,若,则与的夹角为_.16在的展开式中,的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在正四棱锥中,点、分别在线段、上,(1)若,求证:;(2)若二面角的大小为,求线段的长18(12分)设函数,()求曲线在点(1,0)处的切线方程;()求函数在区间上的取值范围19(
4、12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明20(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)21(12分)已知xR,设,记函数.(1)求函数取最小值时x的取值范围;(2)设ABC的角A,B,C所对的边分别为a,b,c,若,求ABC的面积S的最大值.22(10分)已知函数f(x)|x2|x1|.()解不等式f(x)1;()当x0时,若函数g(x)(a0)的最小值恒大于f(x),求实数a的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有
5、一项是符合题目要求的。1、B【解析】由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,单调递增,故不等式的解集等价于不等式的解集故选:B【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.2、C【解析】根据线面平行或垂直的有关定理逐一判断即可.【详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【点睛】考查线面平行或垂直的判断,基础题.3、A【解析】利用复数代数形式的乘除运算化简,再由复数相等
6、的条件列式求解【详解】,得,故选:【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题4、B【解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题5、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即,解得或.故选:D【点
7、睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.6、B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题7、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】
8、本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.8、C【解析】由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.9、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,
9、对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.10、A【解析】根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功11、D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.12、D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 吕梁 孝义市 2023 年高 数学 模拟 密押卷含 解析
限制150内