《山西省运城市景胜中学2022-2023学年高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山西省运城市景胜中学2022-2023学年高考冲刺数学模拟试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD2已知双曲线的一个焦点为,点是的一条
2、渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD3函数的单调递增区间是( )ABCD4命题“”的否定是( )ABCD5集合,则( )ABCD6由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7若函数函数只有1个零点,则的取值范围是( )ABCD8已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD9历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了
3、圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是ABCD10在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD11设等比数列的前项和为,则“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要12如图,在平行四边形中,对角线与交于点,且,则( )ABCD二、
4、填空题:本题共4小题,每小题5分,共20分。13函数的极大值为_.14执行如图所示的程序框图,则输出的结果是_.15已知全集为R,集合,则_.16已知数列的前项满足,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.18(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.19(12分)在平面直角坐标系中,
5、以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);(II)设,若,成等比数列,求的值20(12分)已知,函数的最小值为1(1)证明:(2)若恒成立,求实数的最大值21(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.22(10分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.参考答案一
6、、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.2、B【解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐
7、近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.3、D【解析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.4、D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】本题考查全称命题的否定,难度
8、容易.5、A【解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.6、C【解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.7、C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1
9、个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.8、B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.9、B【解析】初始:,第一次循环:,继续循环;第二次循环:,此时,满足条件,结束循环,所以判断框内填入的条
10、件可以是,所以正整数的最小值是3,故选B10、A【解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程为 因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.11、A【解析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立
11、,所以有,故可以推出,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.12、C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数求导,根据函数单调性,即可容
12、易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.14、1【解析】该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】模拟程序的运行,可得:,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,此时满足条件,退出循环,输出的值为1故答案为:1【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.15、【解析】先化简集合
13、A,再求AB得解.【详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解析】由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法【详解】,时,得,又,()故答案为:【点睛】本题考查求数列通项公式,由已知条件类比已知求的解题方法求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【
14、点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.18、(1);(2)是定值,.【解析】(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【详解】(1)设动点M的坐标为,由知,又在直线上,所以P点坐标为,又,点为的中点,所以,由得,即;(2)设直线AB的方程为,代入得,设,则,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,所以,从而,所以是定值.【点睛】本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定
15、值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.19、(I),;(II).【解析】(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【详解】(I)曲线:,两边同时乘以可得,化简得);直线的参数方程为(为参数),可得x-y=-1,得x-y+1=0;(II)将(为参数)代入并整理得韦达定理: 由题意得 即 可得 即 解得【点睛】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用
16、知识,属于较易题.20、(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可详解:()证明:,显然在上单调递减,在上单调递增,所以的最小值为,即()因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题21、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即
17、,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详解】(1),当时,恒成立,当时,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,此时函数只有一个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.【点睛】本题考查导数的综合应用,涉及到单调性、零点、极值最值,考查分类讨论和等价转化思想,属于中档题.22、(1);(2);(3)存在,1.【解析】(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),所以,所以.(3)由(1)可得,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题.
限制150内